
 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tuebingen

System of Text Processing Programs

1993

==

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

 - 2 -

 This manual provides a full description of

TUSTEPàs features. This description is

intended as a reference work - not as a

tutorial for beginners.

To get to know TUSTEP, we suggest attending

an introductory course. The University of

Tübingen offers a one-week introductory

course during its winter and summer

recesses. This course is followed up by a

two-week main course starting in autumn.

TUSTEP - 3 - Basics

TABLE OF CONTENTS

Introduction . 5

Files . 13

Data Transfer . 28

Data Backup . 32

System environment . 36

TUSTEP Startup . 46

Commands . 52

 CALL Calling a program 62
 CLOSE Closing files 64
 COLLATE Listing comparison results 66
 COMPARE Comparing versions of the same text 68
 CONVERT Converting/encoding data/files 70
 COPY Copying, selecting and modifying texts . . . 75
 CORRECT Executing correcting instructions 77
 CREATE Creating files 79
 DEFINE Defining a macro file, variables, etc. . . . 83
 DUMP Analyzing a file 90
 EDIT Editing data/files 91
 ERASE Erasing data/deleting files 93
 ERROR STOP Error stop toggle 96
 EXECUTE Executing a sequence of commands 97
 FORMAT Formating texts (autom. layout) 101
 GFORMS Generating forms 103
 GINDEX Generating an index after sorting 105
 GLISTING Generating a listing of a text file 107
 HELP Online help 109
 INFORM Information about macro files, variables, etc. 111
 INSERT Inserting text parts 114
 JOURNAL Activating/deactivating journal files . . . 116
 LIST Listing file names, etc. 121
 MACRO Creating command sequences 127
 MANUAL Listing descriptions 128
 MERGE Merging data/files 131
 MTCOPY Copying data from one magnetic tape to another 132
 MTINFORM Information about magnetic tapes 137
 MTLABEL Adding/removing labels for a magnetic tape 139
 MTREAD Reading files from magnetic tape 141
 MTWRITE Writing files onto magnetic tape 144
 NUMBER Renumbering references 149
 OPEN Opening files 151
 PARAMETER Activating/deactivating parameter log . . . 154
 PAUSE Pause before executing following commands . 155
 PINDEX Preparing an index before sorting 156
 PRESORT Preparing data for sorting 158
 PRINT Print output 160
 RENAME Renaming files 163
 RESET Resetting/terminating TUSTEP 164
 RESTORE Restoring data from unfinished files . . . 165
 SORT Sorting data/files 165

Basics - 4 - TUSTEP

 STATISTICS Listing TUSTEP statistics 170
 SWITCH Setting/clearing selection switches 171
 TIME Time 172
 WIPE Wipe (overwrite) data 173

Editor . 174

Parameters . 241

Macros (user-defined commands) 266

Character set . 294

Code tables . 341

Appendix . 357

 The PC as a terminal 359

Parameter-controled programs

 COLLATE . 361
 COMPARE . 371
 COPY . 391
 CORRECT . 449
 FORMAT . 461
 GFORMS . 483
 GINDEX . 499
 GLISTING . 527
 INSERT . 539
 NUMBER . 553
 PINDEX . 561
 PRESORT . 595

 - 5 -

 I n t r o d u c t i o n

Basics - 6 - TUSTEP

Survey

What is TUSTEP? . 7

Basic Operations of Textdata Processing in TUSTEP 9

Organizational Features of TUSTEP 12

TUSTEP - 7 - Basics

What is TUSTEP?

The "TUebingen System of Text Processing Programs" TUSTEP was
developed at the Computing Center of the University of Tuebingen
by the Department of "Literary and Documentary Data Processing."
The purpose of TUSTEP is to enable the user to solve problems of
scientific textdata-processing with a minimum of short
instructions which are closely related to the task, instead of
being dependent on less appropriate tools like programming
languages.

Therefore, programs have been provided for the most important
basic operations of textdata processing. The functions of each
program are controlled by parameters. The programs themselves
may be combined in a variety of ways to solve problems of the
most diverse kind.

The concept of "text data processing" used here is meant to
distinguish the operational potential of TUSTEP from what is
commonly understood by the term word processing. Naturally,
TUSTEP also possesses all the features needed to create
documents: input, correcting, formating, printing, etc., for
these are employed for purposes of documentation and publication
required in all scientific and academic fields. But TUSTEP was
developed especially for those scientific fields in which texts
represent the main focus of research: philology, linguistics,
literature, history, library science, and other related areas.
Scientific activity in all of these fields is not limited to the
creation and publication of new texts. Here is where existing
texts - whether traditional, already set down in writing or yet
to be recorded (including literary texts and historical sources)
- need to be saved in new critical editions where they can be
the object of linquistic and contextual analyses, and further
recorded in bibliographies.

These basic operations of textdata processing (and the
corresponding TUSTEP programs) encompass functions that can be
generally characterized as follows: Collation of different text
versions; correcting not only in the interactive Editor mode,
but also with the use of prepared (or automatically generated)
correction instructions; breakdown of text into user-defined
elements (z. B. semantic patterns); sorting textelements or
lengthy units of text according to a number of different
alphabets and other criteria; Generating an index by compiling
sorted text-elements; Processing textdata according to
user-defined selective criteria, replacing, moving, enhancing,
concluding and comparing text, calculating numerical values
contained in the text (e. g. calender dates) or those which can
be determined from the text (e. g. the number of words in a
sentence), and output in various formats, including those
required by other operating systems (e. g. SPSS for statistical
evaluation).

The tasks which can be processed with the help of TUSTEP range
from typing a term paper to the preparation and automatic
composition of extensive scientific works (bibliographies,
encyclopedias, indices, concordances, dictionaries, special
editions and of course monographs) in a quality to which one is
accustomed in letterpress printing.

Basics - 8 - TUSTEP

In addition to programs for the basic operations of textdata
processing, TUSTEP is equipped with all the necessary
organizational functions such as file handling and defining new
commands, functions which are normally covered by the job
control language (JCL) of the operating system (OS). Thus, an
identical user interface independent of the computer and its OS
is provided. This not only spares the user the additional effort
of relearning new commands when he changes to a computer with a
different operating system, but also enables him to use existing
sequences of TUSTEP commands unchanged.

The implementation of a universal user interface requires
sacrificing special features offered by certain computers and
operating systems. For this reason, many graphic features common
to a PC screen display are not available.

TUSTEP is permanently improved and expanded in order to
facilitate solutions for new problems in scientific textdata
processing. New developments in the field of hardware and
operating systems are also taken into account.

TUSTEP owes many of its special features to the suggestions,
criticism and cooperation of users from practically all areas of
the liberal arts, including many users from a number of other
universities besides the University of Tübingen. We at the
TUSTEP programming staff remain grateful for any recommendations
you may provide.

Although originally developed and implemented at the University
of Tübingen, TUSTEP is now being used by a number of other
universities. At present, it can be run under the following
operating systems: DOS (IBM PCs and compatible), UNIX, VMS (DEC
VAX) as well as BS2000 (SIEMENS), MVS (IBM), VM/CMS (IBM). The
last three systems listed here are limited in the TUSTEP editor
functions.

TUSTEP - 9 - Basics

Basic Operations for Processing Textdata in TUSTEP

EDITING

Entering, modifying, replacing and searching textdata with the
texteditor onscreen [#EDIT]

Automatic correction of textdata with user-defined correction
instructions [#CORRECT]

COMPARE

Comparing different versions of a text; protocolling and storing
of differences found [#COMPARE]

A line-by-line synoptic listing of the basic text and
differences contained in the other versions [#COLLATE]

PROCESSING

Selecting, substituting, rearranging, supplementing, summarizing
and comparing text parts on the basis of given rules and
conditions; calculating with numerical values (including
calendar dates), which are already present in the text or which
can be derived from it; output in various formats (also for
subsequent processing outside of TUSTEP) [#COPY]

Replacing text abbreviations with their complete text (including
extended text units), which are located in their own file.
[#INSERT]

Maintaining and updating cross-references [#NUMBER]

PREPARING INDEXES

Compiling index entries by breaking down text units into their
respective components, or by extracting marked text parts. If
necessary, text parts may be supplemented and modified. Defining
the sort criteria and the sort alphabet, supplementing
references; distinguishing between different types of entries
[#PINDEX]

Basics - 10 - TUSTEP

PREPARING FOR SORTING

Organizing logically related text parts into sort units;
establishing user-defined sort criteria (selecting and ordering
defined text parts of the sorting units), the sort values for
any number of character strings as well as the sorting alphabet
involved in the final sort to determine the order of the sort
units. [#PRESORT]

SORTING

Arranging data records in alphabetically ascending or descending
order as determined by the sort criteria. These are usually
generated by the programs #PINDEX or #PRESORT, and are located
in sorting fields [#SORT]

Merging a number of files containing sorted data into a single
file [#MERGE]

GENERATING INDEXES

Organizing multiple and any hierarchically structured index
entries or text units after sorting; supplementing and
substituting text parts and references; distinguishing different
types of entries; calculating absolute and relative frequencies
[#GINDEX]

GENERATING LISTINGS

Preparing output for line printers, dot matrix printers and
laser printers

- in the form in which the data are recorded in the file, i.e.
control characters are not interpreted but printed along with
the other characters. [#GLISTING]

- in a format and an arrangement which can be freely defined
(using control characters contained in the text) by taking
advantage of the entire inventory of typefaces and characters
available for the selected printer, with automatic
hyphenation, line division and page make-up, including page
justification and placing of footnotes [#FORMAT]

- for forms (e.g. address labels, catalog cards, standardized
letters, office forms) [#GFORMS]

TUSTEP - 11 - Basics

GENERATING PHOTO COMPOSITION

Converting textdata into a form required by either a PostScript
printer or a professional photo composition device (presently
DIGISET, Monotype LASERCOMP, PostScript phototypesetters).
Typographic features include automatic line division (with
either justified or ragged right margins, tab settings) and
automatic page make-up with running heads, titles, text,
insertions in smaller type, side bar text, footnotes and up to
nine critical apparatuses. An extensive selection of fonts and
special characters is also available. [#COMPOSITION]

Basics - 12 - TUSTEP

Organizational Features of TUSTEP

DATA TRANSFER

Converting textdata from files of the operating system into
TUSTEP format; converting data from TUSTEP files into files of
the operating system (can also be used for electronic data
transfer for networks and E-mail) [#CONVERT]

FILE MANAGEMENT

Creating, cataloging, opening, closing, renaming and erasing
files [#CREATE, #OPEN, #CLOSE, #RENAME, #ERASE]

MAGNETIC TAPE SERVICES

Data transfer to and from magnetic tape (can also be used to
exchange data between different computers); View information
concerning the contents of magnetic tapes [#MTWRITE, #MTREAD,
#MTCOPY, #MTINFORM]

JOB CONTROL

Executing/controlling sequences of commands and programs;
creating and executing user-defined commands (macros) [#EXECUTE,
#MACRO]

 - 13 -

 F i l e s

Basics - 14 - TUSTEP

Survey:

Project and Carrier 15
Project names and file names 15
Standard files 17
TUSTEP files 17
System files 18
File types 18
Text files 19
Program files 19
Segment files 19
Macro files 20
Editor file 20
Print files 20
Related files 21
Start file -. 21
Statistics file 21
Scratch files 21
Magnetic tape files 22
Structure of a TUSTEP file 22
Record numbers 23
Reorganizing a TUSTEP file 24
Creating files 25
Opening files 25
Closing files 25
Erasing files 26
Printing a file 26
Restoring files 26

TUSTEP - 15 - Basics

Project and Carrier Under the early operating systems on which
TUSTEP was implemented, a file was identified by the user name
and the name of the file itself. The valid user name was
determined by the system (system manager). Such names were
usually given for each task area, e.g. for an individual
research project. For personal files, the user name did not have
to be given explicitly, but it was mandatory for accessing files
from other "projects".

Files were usually saved to hard disk, but could also be saved
to removable disks. These were changed by the operator whenever
necessary - thus every removable disk also required its own
name, which was specified as the name given for the "data
carrier". This name had to be included when requesting a file
located on a removable disk.

These name specifications have been retained in the TUSTEP
program as reflected in the the name categories of "project" and
"carrier". These terms are still used in TUSTEP in order to
enter the necessary file specifications (in addition to the
actual file name) for clearly identifying a file.

Under newer operating systems, a file is identified by
specifying its path and file name. A file is created by having
its name placed in a directory. A directory is a special kind of
file managed by the operating system. Except for the root
directory, the name of each directory is listed in the directory
at the next higher level. Thus, all directories branch off
either directly or indirectly (via one or more other
directories) from the root directory. The path specification for
a file contains the names of all directories needed to find the
file, starting with the root directory and ending with the
directory where the name of the file is entered.

The directory (and any other directories above it) in which the
name of a file is entered corresponds to the TUSTEP "Project"
specification. The remaining part of the path is specified by
"Carrier". The default settings for project and carrier have
been selected in such a manner that in most ordinary cases
merely specifying the file name is all that is necessary to
address a file. More details concerning the project and carrier
specifications are described in the chapter entitled "System
environment" (see "System variables TUSTEP_DSK, TUSTEP_SCR,
TUSTEP_PRJ" page 39).

Project names and file names

In TUSTEP, the complete file name (i.e. file name and its
project) is written as "Project*Name". If the project
specification and the following asterisk are omitted, the
program will automatically use as "project" the project name
most recently set with the command #DEFINE (see page 83). If
only the project name is omitted, but the asterisk is specified
before the name of the file, the active "project" will use the
project name set during TUSTEP initialization (see page 48,
"System variables TUSTEP_DSK, TUSTEP_SCR, TUSTEP_PRJ").

Basics - 16 - TUSTEP

In the VMS version, the form "project*name(version)" is also
possible. If the specification (version) is omitted, the file
having the largest version number will be assumed.

The following list shows how the TUSTEP form of the file name is
converted to the form used by the operating system, as well as
the proper syntax for writing "project" and "name" according to
the operating system being used. Here, "A" represents any letter
from A to Z and "X" represents any letter from A to Z, any digit
from 0 to 9 or the " " character. The maximum number of
characters is given for each case.

BS2000: Project*Name éêë $PROJECT.NAME

Project: AXXXXXXX
Name: AXXXXXXX oder AXXXXXXX.AXXXXXXX

DOS: Project*Name éêë \PROJECT\NAME
 -*Name éêë \NAME

Project: AXXXXXXX or AXXXXXXX.XXX or AXXXXXXX\XXX
Name: AXXXXXXX or AXXXXXXX.XXX

MVS: Project*Name éêë PROJECT.NAME

Project: AXXXXXXX
Name: AXXXXXXX or AXXXXXXX.XXXXXXXX

Due to organizational reasons, some computing centers may
use different specifications. Please consult the
information bulletin of the respective computing center for
proper use.

UNIX:Project*Name éêë /project/name
 -*Name éêë /name

Project: AXXXXXXX or AXXXXXXX.XXX or AXXXXXXX/XXX
Name: AXXXXXXX or AXXXXXXX.XXX

VM/CMS: Project*Name éêë NAME - PROJECT
Project*Name1.Name2 éêë NAME1 NAME2 PROJECT

Project: A
Name: AXXXXXXX

For permanent files, the project determines the file mode
(the minidisk). For temporary files (scratch files), file
mode T is always used. Thus, AXXXXXXX is a valid project
syntax for these files. However, to ensure that file names
remain unique for the operating system, a running number is
used internally as the file type.

VMS: Project*Name éêë [PROJECT]NAME
Project*Name(Version) éêë [PROJECT]NAME;VERSION

TUSTEP - 17 - Basics

Project: AXXXXXXXXXXX or AXXXXXXX.XXX
Name: AXXXXXXXXXXX or AXXXXXXX.XXX
Version: 1 to 999

File names having the form "TUSTEP.xxx" (where xxx stands for
any combination of letters and digits) are reserved for TUSTEP
and may not be used for naming files. But there are two
exceptions to this:

The file name "TUSTEP.INI" is reserved for the TUSTEP start
file, which contains commands that are automatically executed
whenever TUSTEP is initialized (cf. page 48).

The file name "TUSTEP.USE" is reserved for the TUSTEP statistics
file, where user statistics for the TUSTEP program are recorded.
These statistics can be viewed and printed out with the command
#STATISTICS (see page 170).

Standard files

In addition to files which are explicitly opened or created by
the user, the following standard files are also available:

Standard DATA file
Standard EDITOR file
Standard LISTING file
Standard TEXT file

The names of these files depend on the operating system being
used. Therefore, they should be addressed with the file name
-STD- only. They are automatically created whenever they are
needed (in the MS-DOS version during initialization). To find
out when and where these files may be used, please refer to the
respective TUSTEP commands.

TUSTEP files

TUSTEP programs assume that the data to be processed are
recorded in TUSTEP files. TUSTEP files are files having a unique
TUSTEP structure. They are created using the command #CREATE
(cf. page 79) and are assigned either a SEQ or RAN type. They
can be created only on a hard disk or diskette, but not on
magnetic tape.

TUSTEP files can be classified into three groups: text files,
program files, and segment files. They are all created in the
same manner, differing only in the way they are employed and the
type of data they contain.

Basics - 18 - TUSTEP

System files

In order to transfer data to or from other programs TUSTEP is
capable of working with "system files". System files are files
having the usual structure common to the respective operating
system. Such files may also be created with the command #CREATE
(see page 70) and have the type specification of SDF. The
following list shows what kind of files may be used for data
transfer.

BS2000: SAM files with RECFORM=V

DOS: ASCII files

MVS: DSORG=PS with RECFM=FB or VB
DSORG=PO with RECFM=FB

UNIX: ASCII-Dateien

VM/CMS: CMS files where RECFM=F or V

VMS: RMS files

File types

 file

 system TUSTEP
 file file
 (Typ: SDF) (Type: SEQ

 or RAN)
 ASCII files
 EBCDIC files

 text program segment
 file file file

 texts macros
 temporary programs programs
 data texts

TUSTEP - 19 - Basics

Text files

A text file is a TUSTEP file which contains text or temporary
data (e.g. sort keys).

If a text file contains text, its records are normally numbered
in text mode. If the text being edited is to be saved as a
segment file (e.g. an address or a text mask), its records must
be numbered in program mode.

If a text file contains temporary data, the records are numbered
by TUSTEP in the appropriate fashion and the record numbers will
be interpreted as such if necessary. A file of this type usually
cannot be edited with the editor, and - except for listing files
- there is no reason to do so.

Program files

A program file is a TUSTEP file which contains a program
(= a sequence of commands) or a command macro. Its records are
numbered in program mode.

Segment files

A segment file is a TUSTEP file which is divided into segments.
A segment may contain a program, a macro or text. Every segment
has a name by which it can be addressed. At the beginning of a
segment file is a table of contents showing the names of the
segments contained in the file. This table of contents is
created automatically whenever data edited in the EDITOR file
are saved as a new segment to an empty TUSTEP file. This table
of contents is also updated automatically whenever data from the
EDITOR is saved to an existing segment file. In both cases, data
are saved by using the Unload instruction in the Editor (see
page 187).

A segment file should never be edited with the Editor directly.
Instead, it should be created and processed only with the
editing instructions "Load" and "Unload" (see instruction L on
page 186 and instruction U on page 187). Since the record
numbers of a segment file serve as references for its table of
contents, they should not be renumbered. The individual segments
of a segment file can be sorted alphabetically by name with the
standard macro #*SESO. This macro can also be used to renumber a
segment file if its record numbers have been accidently altered.
In addition, this macro also offers the possibility of compiling
a new table of contents for a segment file. This is necessary
when, for example, two segment files have been copied to a
single file. Further information concerning this macro can be
obtained with the command #INFORM,*SESO.

Basics - 20 - TUSTEP

Macro files

A macro file is a segment file whose individual segments each
contain a macro (user-defined commands; see chapter entitled
"Macros" starting on page 266). The name of the segment is also
the name of the macro. To gain access to these macros, the macro
file must be defined as such with the command #DEFINE (see page
83).

Editor file

The editor file is the TUSTEP file currently being processed
with the Editor, i.e. the file most recently given in the
specification FILE when calling up the editor (cf. command #EDIT
page 91), or the file last specified with the relevant editing
instruction (see instruction F page 191). This file should not
be confused with the standard EDITOR file which is automatically
available to the user for editing purposes and only becomes an
editor file when actually processed by the editor.

Print files

A print file is a TUSTEP file containing data which have been
prepared for printing. Generally, such a file is set up by
giving its name for the specification LISTING in TUSTEP
programs. It can be sent to a printer using the command #PRINT
(see page 160).

One essential characteristic of a print file is that the first
character of each record is a feed character or an asterisk. The
effect of the feed characters - 0 1 2 3 4 5 6 7 / is a new page,
0 to 7 line feeds and a one and a half line feed. A line
beginning with an asterisk is a control line whose function is
determined by the second character. If a slash ("/") follows the
asterisk, printing is switched to one-and-a-half-line spacing.
Thus, line feeds are increased by a factor of 1.5. A "1" after
the asterisk switches back to single-space printing.

In addition to the usual data, such a file may also contain
printer control information described in the table below.

 #=nnn absolute positioning to column nnn
 #-nnn relative positioning by nnn columns to the left
 #+nnn relative positioning by nnn columns to the right
 #=000 mark current column position
 #-000 positioning to marked column

#+000 positioning to the next available column to the
right

TUSTEP - 21 - Basics

Related files

Related files are two TUSTEP files where the records of the
first file contain pointers to the records of the second file.
Such files are generated by the commands #PINDEX and #PRESORT
(see pages 156 and 158) by giving their names for the
specifications DESTINATION and DATA. In this case, only those
text parts needed for sorting (i.e. in most cases the reference
and the sort key) are written along with a pointer to the file
given in the specification DESTINATION. The remaining parts
(i.e. the data to be sorted) are written to the file given in
the specification DATA.

The file with pointers may only be sorted or merged. By no means
should the record numbers of this file be altered, since they
contain the pointers. The other file whose records are referred
to, should not be altered in any way; otherwise, the pointers
will not correspond to the intended records.

The data of related files may be recombined with the commands
#SORT and #MERGE (see pages 167 and 131) and with the commands
#GINDEX and #COPY (see pages 105 and 75). In this case, the file
with the pointers must be given in the specification SOURCE and
the other file in the specification DATA.

Start file

The start file is a file called *TUSTEP.INI, which contain
commands that are automatically executed whenever TUSTEP is
initialized (see page 48).

Statistics file

The statistics file is a file called *TUSTEP.USE, in which the
TUSTEP user statistics are listed. These statistics can be
listed with the command #STATISTICS (see page 170).

Scratch files

In TUSTEP a distinction is made between permanent (cataloged)
files and temporary files. Permanent files remain so until they
are explicitly erased. Temporary files are automatically erases
at the end of a TUSTEP session, assuming that they were not
explicitly erased beforehand.

Temporary files, also known as scratch files, are only used to
store intermediate data, since scratch files are only used for
the particular TUSTEP-Sitzung in which they were created. The
usefulness of scratch files is that files used for intermediate

Basics - 22 - TUSTEP

data can be automatically erased at the end of a TUSTEP session.
Furthermore, a conflict of names with other files is avoided
when a number of sessions are carried out at the same time.

A conflict of names is avoided in that the operating system
converts the names of scratch files to internally standardized
names. Furthermore, at the operating system level, all scratch
files are created in the same project (directory). (see system
variable TUSTEP_SCR page 39). Thus, it is not necessary that the
project specified by the file name actually exists. However, at
the TUSTEP level names are given to temporary files in the same
manner as that for permanent files.

Magnetic tape files

TUSTEP programs cannot directly process files recorded on
magnetic tape. For purposes of data protection and data exchange
with other TUSTEP users, however, files may be copied from disk
onto magnetic tape with the command #MTWRITE (see page 144).
Such files may then be copied from magnetic tape back onto disk
with the command #MTREAD (see page 141). The command #MTINFORM
(page 137) is used to obtain a list of files which are recorded
on such a tape. The command #MTCOPY (page 132) is used to make
copies of such tapes.

Some computing centers provide standardized macros for reading
and writing magnetic tapes in different data formats. These
standard macros are outlined in the information bulletin of the
respective computing center.

Structure of a TUSTEP file

Data in a TUSTEP file are organized into records. If, for
example, a file contains the text of a book, each record of the
file can contine a line of the text. But you are free to choose
how you distribute your text as records. The text assigned to
each record can be broken down into distinct and appropriate
units. The only limit here is the length of the record. record
length If a file is to be processed with the Editor, none of its
records may contain more than 600 characters. In all other cases
records may have a length of up to 32,000 characters.

Each record "records" not only the text it contains but also the
record length, a record number and two reference points. When
working with TUSTEP the only related organizational feature that
is visible is the record number (see "record numbers" below).
The reference points are used internally for working internally
with larger files (in TUSTEP up to 7 GB per file)

One of the reference points of each record marks the record that
precedes it, the other reference point marks the following
record. Thus the logical sequence of records does not
necessarily have to correspond to their physical sequence. This
feature is especially relevant when, for example, a record is

TUSTEP - 23 - Basics

inserted into a file during editing. At the TUSTEP level this
record is written at the end of the file, but its reference
points are established in a way that the record appears at its
logical position in the file. Otherwise, all records following
the inserted record would have to be shifted toward the end of
the file, e.g. the rest of the file would have to be rewritten
by the computer. The only disadvantage of using such reference
points is that data access to a file declines in performance
when significant alterations are made in the file. However, this
can be corrected by reorganizing the file (see "Reorganizing a
TUSTEP file").

Record numbers

TUSTEP automatically gives each record its own record number.
Expressed in the form of a page number and a line number, record
numbers can be easily used to orgainze a text in a manner
analogous to its printed form. For example, if a file contains
the text of a book, where each record contains a text line, the
record numbers can be selected in such a way that the page
number of the file às records correspond to the the page number
in the book, and that the line number of file às records
corresponds to the running number of the lines on each of the
book às pages. Each text passage can thereby be quickly found,
for example, when working with the Editor, since the printed and
file references correspond to each other. Every line number can
be expanded by a distinction number. The main purpose of a
distinction number is its function of giving a unique number to
lines inserted between line numbers without having to alter the
the numbers of the following records. Thus, an inserted record
is usally given the same page and line number of the records
preceding it, but is given an additional distinction number.

In a file containing a program or macro there is no need to
organize records into pages. In this case, a different numbering
of records is employed, where the page number is always zero and
thus not present. This type of numbering is known as "program
mode numbering". But it can also be used for short texts where
the page nubmer is of no relevance. The type of numbering
described in the preceding paragraph is called "text mode
numbering".

Record numbers in text mode:

 This type of record numbering is generally used in TUSTEP
unless specified otherwise (normally with the specification
MODE=P).

For records numbered in text mode, the record number consists of
a page number, a line number and a distinction number. The page
number can have a maximum of 6 digits, the line and distinction
numbers a maximum of 3 digits each. A record number thus has the

Basics - 24 - TUSTEP

following syntax:
page number.line number/distinction number

The distinction number is usually 0. In this case the 0 and the
preceding slash are omitted. The distinction number must be
written with leading zeros; trailing zeros may be omitted. For
example, the record numbers 1.2/3, 1.2/30 and 1.2/300 are
identical.

Record numbers in [] program mode:

TUSTEP uses this type of record numbering for program files. It
is normally activated by specifying MODE=P in the respective
program.

For records numbered in program mode, the record number consists
of a line number and a distinction number. The line number can
have a maximum of 4 digits; the distinction number a maximum of
2 digits. Here a record number has the following syntax:

line number/distinction number
The distinction number is usually 0. In this case, the 0 and the
preceding slash are omitted. The distinction number must be
written with leading zeros; trailing zeros may be omitted. For
example, the record numbers 1/2 and 1/20 are identical.

Reorganizing a TUSTEP file

When the data of a file are recorded, the file às records are
organized in an unbroken and continous sequence. But when this
file is altered by corrections made with the Editor, this tidy
organization - from the computer às point of view - can become
quite disarrayed for a number of reasons:

- whenever a record is erased, a gap is created.

- whenever a record is shortend, another gap is created.

- after a record is lengthened, it no longer fits into its old
place, unless by chance a gap has been created immediately
before or after the record, thus providing enough room for the
extra space required. Thus, the record is written at the end
of the file but logically placed at its proper location by
means of record markers. The original space remains as a gap
in the file. This case of where a record no longer fits into
its old position is most common when a character string is
automatically replaced by a longer one.

- When a record is inserted in a file, a check is made as to
whether a sufficient gap already exists at the corresponding
location. If yes, it is written there. If not, it is written
at the end of the file and then assigned its logical position
by means of record markers.

Extensive alterations made to a file with the Editor can
therefore result in correspondingly large gaps in the file.

TUSTEP - 25 - Basics

Eventually the logical sequence of its records (used for the
actual processing of the file) has little or no correlation with
the file às physical arrangement. This increases the amount of
time needed to access individual records: first, because the
ever-growing gaps in the file must still be read and second,
because widely scattered parts of the file must be read. In
addition, the resulting gaps are an unnecessary waste of disk
space.

For this reason, files processed by the Editor should be
reorganized from time to time. This is best carried out with the
command #RESTORE (see page 165).

The problem just described about a file às records also applies
to the process of saving segments of a segment file to disk. The
gaps created here can be quite considerable, since the amount of
data contained in individual segments is generally much larger.
It is therefore strongly recommended to reorganize segment files
when optimizing your disk space. In addition to the command
#RESTORE, there is another way to reorganize a file when working
with the Editor. After saving a segment to a segment file with
the unload instruction, the load instruction "L,,-" (see page
186) can be used to load the entire segment file (with all of
its segments), which is then immediately saved once more with
the unload instruction "U!,,-" (see page 187).

Creating files

Except for its standard files, TUSTEP does not create any files
automatically. Files that do not yet exist but are to be used in
TUSTEP must be explicitly created with the command #CREATE (see
page 79).

Opening files

To process existing files in TUSTEP, they must first be opened
(= admitted for processing) with the command #OPEN (see page
151). An opened file is only valid for the current TUSTEP
session.

When opening a file, you can determine whether it should be read
only or also written to. This avoids the accidental writing or
erasing of files that are meant to be read only.

Closing files

To prevent the accidental access to files created or opened in
the same TUSTEP session, the command #CLOSE (see page 64) can be
used to close access to files no longer needed.

Basics - 26 - TUSTEP

Since only approximately 100 files can be opened at the same
time in a single TUSTEP session (excluding TUSTEP às internal
files), it may be necessary to close files that are presently
not required in order to make space for opening or creating
other files.

Please note that scratch files are automatically erased when
they are closed. They cease to exist.

Erasing files

Files which are presently (or later) no longer needed can be
erased with the command #ERASE (see page 93). Whenever a TUSTEP
session is terminated (not just interrupted), the scratch files
of this session will be erased automatically.

Printing a file

Unless it is a print file, a file must be prepared for printing
in order to print it out. This can be done using TUSTEP às FORMAT
program if the file contains the formatting instructions
necessary for interpreting this program. Or it can be prepared
for printing with the TUSTEP GLISTING program. This program
establishes the file às page and line organization for printing
and generates the corresponding listing, which is written to a
LISTING file.

A LISTING file is printed with the command #PRINT (see page
160). Here the data will be converted into the control codes
compatible for the selected printer.

When specifying certain types of printer (e.g. Postscript
printers) the printer specification also includes whether the
format of the printed output is to be portrait or in landscape.
In sideways (landscape) printing two "pages" can be
automatically printed on the same page. To obtain a list of
defined printers, activate the command #LIST,PRINTERTYPES (see
page 121).

Restoring files

In TUSTEP files are automatically terminated after being written
to. Even after an interruption of a TUSTEP program files will be
properly terminated if possible. If this is not possible (e.g.
is the file is full and cannot be expanded; or if the system
locks up), the data of such files will be blocked. This helps
avoid unseen errors in programs which process these data. If
there is a further need for such data, they must first be
recopied with the command #RESTORE (see page 165).

TUSTEP - 27 - Basics

Basics - 28 - TUSTEP

 D a t a t r a n s f e r

 - 29 -

Survey:

Data transfer to and from TUSTEP files 30

Data exchange 30

 Data exchange by magnetic tape 30
 Data exchange by data lines 30

Basics - 30 - TUSTEP

Data transfer to and from TUSTEP files

The TUSTEP command #CONVERT (see page 70) may be used to
transfer data from system files to TUSTEP files or vice versa.
Data may be recoded in the process. For example, the
specification MODE may be used to convert "^a" to "ä" and vice
versa. With the specification CODE, the coding of single
characters may be altered if, for example, the data have been
recorded in an EBCDIC code differing from the international
EBCDIC code. If the coding does not need to be altered, the
editor instructions "Load" and "Unload" (see instruction L page
186 and instruction U page 187) may be also used to transfer
data.

Data exchange / Data transfer [data exchange

If direct file access is not possible, there are two other ways
of exchanging data with other TUSTEP users:

a) Data exchange by magnetic tape:

TUSTEP files may be recorded on magnetic tape with the command
#MTWRITE (see page 144). Data on magnetic tape are copied into
TUSTEP files with the command #MTREAD (cf. page 141). For
writing, make sure that the selected recording density can be
read by the computer of the data recipient.

b) Data exchange by data lines

In order to transmit data of a TUSTEP file by network, the data
must first be copied into a system file using the command
#CONVERT (see page 70), and then converted into a format
appropriate for data exchange. For this purpose, MODE=TX" is
normally specified when #CONVERT is called up.

The data recipient can reconvert the data into its original form
and copy them into a TUSTEP file by using the same command
#CONVERT. For this purpose, the data recipient must specify
MODE=XT when #CONVERT is called up.

TUSTEP - 31 - Basics

Basics - 32 - TUSTEP

 D a t a B a c k u p

 - 33 -

Survey

Data backup without using TUSTEP 34

Data backup using TUSTEP to magnetic tape/cassette 34

Data backup with TUSTEP to diskette 35

Basics - 34 - TUSTEP

Data backup without using TUSTEP

TUSTEP files can be backed up like any other files by using the
relevant backup command of the operating system (e.g. the DOS
BACKUP program). They must then be retrieved with the
corresponding programs (e.g. the DOS RESTORE program).

Data backup with TUSTEP to magnetic tape/cassette

TUSTEP files can be backed up on a magnetic tape or cassete with
the command #MTWRITE (see page 144). Such a file can be restored
with the command #MTREAD (see page 141).

A file can be repeatedly saved to tape or cassette (e.g. after
making any considerable change to its contents) with the same
file name. Files already located on the tape not be overwritten
unless this has been expressedly specified in the command
#MTWRITE. However, it is advisable to alternate tapes or
cassettes when making backups instead of using the same tape or
cassette. If, for example, the last tape or cassette used for a
backup proves to be defect, there is always another backup
available on the tape or cassette used for the backup prior to
the most recent one.

If a magnetic tape or cassette is to be written for the first
time with #MTWRITE, it must first be given a machine-readable
label with the command #MTLABEL (see page 139) if this has not
been already provided for (e.g. by the computing center).

Two other commands are used to manage files saved to magnetic
tape and cassette. The command #MTINFORM (see page 137) is used
to compile a list of all files on a tape or cassette. The
command #MTCOPY (see page 132) is used to copy files from one
tape or cassette to another.

Before a magnetic tape or cassette can be used, a system
variable must first be defined. This tells TUSTEP the name
(address) of the device on which the tape or cassette is
located. Furthermore, on some computers certain operating system
routines must be executed before and after the use of magnetic
tapes and cassettes. A more detailed description of this can be
found in the chapter entitled "System environment" (see "System
variable TUSTEP_MT1, TUSTEP_MT2" page 43 and "Magnetic tape
operation" page 44).

TUSTEP - 35 - Basics

Data backup with TUSTEP to diskette

The DOS version of TUSTEP has no special commands for backing up
data to diskette. If a backup of a file on a hard disk is to be
made on a diskette, the command #CREATE is used to create a file
on the diskette, to which the file to be backed up can then be
written:

#create,-*text,seq-ap,carrier=a
#restore,text,-*text,,+
#close,-*text

If this file should be returned to the hard disk, it must first
be opened and then copied to a file on the hard disk:

#open,-*text,carrier=a
#restore,-*text,text,+
#close,-*text

When saving a file to diskette with TUSTEP, the file must be
copied in its entiriety to one diskette. TUSTEP cannot
distribute a file to two or more diskettes. If a file is too
large to fit onto one diskette only, its data must be
distributed among a number of discrete files, when can then be
backed up to diskette. The cumbersome process can be avoided by
compressing the data when they are backed up. Compression
practically doubles the amount of data that can be saved on a
single diskette.

To backup a file in compressed mode, the line with the command
#restore in the first command sequence above must be replaced by
the following command:

#convert,text,-*text,tk,+

The corresponding command in the second command sequence above
(for copying back to the hard disk) would be

#convert,-*text,text,kt,+

In contrast to file backup to magnetic tape or cassette using
the command #MTWRITE, the following must be observed when
backing up files to diskette: If a file is repeatedly backed up
(e.g. after making any considerable change in its contents)
using the same name on the same diskette, the backup copy of the
file already on diskette will be overwritten each time. This can
be avoided by assigning different names to the files on diskette
(e.g. test.1, test.2 etc. when backing up a file called test).
However, it is also wiser to alternate diskettes when backing up
files instead of using the same diskette for all backups. If,
for example, the last diskette used for a backup proves to be
defect, there is always another backup available on the diskette
used for the backup prior to the most recent one.

Basics - 36 - TUSTEP

 S y s t e m e n v i r o n m e n t

 - 37 -

Survey

General information 38
System variable TUSTEP_HST 38
System variable TUSTEP_USR 38
System variable TUSTEP_NAM 39
System variables TUSTEP_DSK, TUSTEP_SCR, TUSTEP_PRJ 39
System variable TUSTEP_LIB 42
System variable TUSTEP_MDS 42
System variables TUSTEP_SET, TUSTEP_RST 42
System variable TUSTEP_LPR 42
System variable TUSTEP_SUB 43
System variable TUSTEP_MEM 43
System variables TUSTEP_MT1, TUSTEP_MT2 43
Magnetic tape operations 44
System variables and TUSTEP sessions 44

Basics - 38 - TUSTEP

General information

In most cases you will not find it necessary to use the various
ways of configuring TUSTEP for the respective computer
environment as described in this chapter. TUSTEP às default
settings have been either selected or set up during installation
in such a way that all you have to do is call up TUSTEP in order
to work with it.

System configuration is carried out by variables that are
defined before the TUSTEP program is called up. Variables that
are used by TUSTEP but not yet defined, are automatically
defined and assigned a standard value. In the DOS version of
TUSTEP, however, these variables are not automatically defined,
since the amount of system memory required is often
insufficient. However, they will still be treated as if they
have been defined with a standard value.

These variables (usually called environment variables) should
not be confused with the variables defined at the TUSTEP level.
To avoid any confusion in this matter, the former type of
variables will be called called "system variables" and the
latter "TUSTEP variables".

System variables can be defined with the following commands at
the operating system level:

DOS: set NAME=value
UNIX: setenv NAME value
VMS: define NAME value

Note: UNIX distinguishes between uppercase and lowercase
letters. The command name setenv must always be written in
lowercase letters; the names of variables in uppercase letters.
The latter applies only to system variables evaluated by TUSTEP.

If a TUSTEP session is temporarily interrupted and continued
later, the system variables evaluated by TUSTEP may not be
altered in the meantime. If they have been altered, they must be
first be restored to the same values in effect when the TUSTEP
session was interrupted before the session can be continued.

System variable TUSTEP_HST

To make sure that the journal also lists the name of the
computer being used, the system variable TUSTEP_HST tells TUSTEP
the name of the current (host) computer. Its name is then
included in the start and end messages produced by the
individual programs. The standard value here is the name
provided by the respective operating system. An inquiry of the
defined computer names can be made with command macros (see page
275).

System variable TUSTEP_USR

User identification (userid, loginid) is conveyed to TUSTEP by
means of the system variable TUSTEP_USR. It is used to identify

TUSTEP - 39 - Basics

the cover sheets of compter printouts. An inqiry of this user
identification information can be made with command macros (see
page 275).

System variable TUSTEP_NAM

Besides the user ID number, cover sheets in printouts also
feature the user às name. The user name can be determined with
the command #DEFINE. The default setting can be given with the
system variable TUSTEP_NAM. The standard value here is taken
from the contents of the system variable TUSTEP_USR.

System variables TUSTEP_DSK, TUSTEP_SCR, TUSTEP_PRJ

TUSTEP interprets these variables when identifying files. In
TUSTEP a file is identified by three specifications:

1. Carrier: defines the first part of a file às path up to the
last or next-to-last directory.

2. Project: Defines the rest of the file às path (the part not
yet defined by the carrier). This is usually the name of the
directory in which the file is listed. But it can also be the
names of the last two directories when the name of the last
directory consists of no more than three letters and the name
of the next-to-last directory consists of no more than eight
characters. The two names must be separated by a delimiter
character. In DOS this is the backslash character, in UNIX
the forward slash, and in VMS a period.

3. Name: name of the file with no path specifications.

Default values are possible for both the carrier as well as for
the project. In most cases specifying just the file name is
sufficient for it it to be correctly identified by TUSTEP.

The project can also be specified, but this is only necessary
when it differs from the current setting. If necessary, the
project is written before the file name and separated from it
with an asterisk. The default project setting is defined by the
system variable TUSTEP_PRJ which is read during TUSTEP
initialization. This default value can be reset with the TUSTEP
command #DEFINE; here the contents of the system variable
remains unchanged. Supplying an asterisk in front of a file name
(without specifying a project name) is the same as specifying
the project established during TUSTEP initialization.

A carrier is specified only for commands which either provide
file access for other TUSTEP commands (#OPEN, #CREATE), bar such
access (#CLOSE, #ERASE) or supply information concerning
existing files (#LIST). In all other commands, files are
addressed by their project and file names only. (This also means
that TUSTEP cannot access at the same time two files having the
same project and file name and located on different carriers.)
The carrier specification can be omitted if it corresponds to
the default value. For permanent files, the default value for
the carrier is specified in TUSTEP_DSK, for temporary files
TUSTEP_SCR. The default value for the carrier cannot be changed

Basics - 40 - TUSTEP

with TUSTEP commands. If necessary, a different system variable
with the appropriate specification must be given.

The standard value for the system variables TUSTEP_DSK and
TUSTEP_PRJ are taken from the corresponding path components of
the "home directory" (usually the directory that is set after
login). If, for example, this home directory is called
/home/group/user, then /home/group is used as the standard value
for the system variable TUSTEP_DSK, and user as the standard
value for the system variable TUSTEP_PRJ. The standard value for
the system variable TUSTEP_SCR uses the specification given for
the system variable TUSTEP_DSK.

In this example and in the rest of this chapter, path
specifications follow the UNIX conventions. If TUSTEP is to be
used with a different operating system, please note the
following differences:

- DOS: The path specification always begins with the letter of
the drive (hard disk or diskette). This letter is separated
from the rest of the path specification by a colon. A
backslash is used to separate the individual directory names
instead of a forward slash. For example, the path /home/group
under DOS should read C:\home\group, where home and group
stand for a directory name. - Under DOS the home directory is
assumed to be C:\tustep. Thus C: is used as the standard value
for the system variable TUSTEP_DSK, and tustep as the standard
value for the system variable TUSTEP_PRJ.

- VMS: A path always begins with the name of a drive. A colon is
placed between this name and the rest of the path
specification, which is placed in square brackets.
Furthermore, a period is used instead of a forward slash to
separate directory names. For example, /home/group should be
written as DISK:[home.group], where home and group stand for
the name of a directory.

For a file in TUSTEP having the name file, the default settings
described above are used to convert the three components
carrier + project + name into the name /home/group/user/file.

If a file having the name /home/group/userx/file is to be
addressed, this can be done by specifying userx as the project
along with the filename file, i.e. userx*file. If, however,
userex has been previously set as the project with the command
#DEFINIERE, there is no need to include the project
specification.

But if a file having the name /home/groupx/userx/file is to be
addressed, a system variable having the value /home/groupx must
first be defined. The name of the system variable can be freely
chosen. This variable name must be specified as the carrier when
creating or opening the file. The project specification is the
same as described above.

If a file having the name /home/group/user/dir/file is to be
addressed, this can be done by specifying user/dir as the
project, as long as the actual directory name for user is no
longer than 8 characters and the actual name used for dir is no
longer than 3 characters. Otherwise, a system variable having

TUSTEP - 41 - Basics

the value /home/group/user must be defined and then specified as
the carrier. Here the project would be dir.

For file names whose paths contain more directories than shown
in the sample paths here, system variables would have to be
defined for the carrier specifications with the appropriate
directory names being specified.

Naming files in TUSTEP is limited on one hand by the
compatibility requirements of the various operating systems and
on the other hand by syntactical reasons when entering commands
and Editor instructions. As a result, TUSTEP may not always be
able to address a file not created with TUSTEP if an invalid
notation has been used in the file às name. This generally
applies to files whose name contains special characters or
umlauts. Under UNIX this also affects files whose names include
uppercase letters, since in TUSTEP all letters of a file name
(regardless of whether they are uppercase or lowercase) are
evaluted and passed on to UNIX as lowercase letters. This can be
corrected by changing the name of a file whose present name is
invalid in TUSTEP at the operating system level until it is
given a name that is also valid for TUSTEP.

The following operating system command can be used to rename
files:

DOS: rename oldname newname
UNIX: mv oldname newname
VMS: rename oldname newname

Under UNIX there is an additional command for giving a file an
alternate name, which can be used when this file is addressed by
TUSTEP. The command às syntax is:

UNIX: ln name altername

This has the advantage that the file às old name can still be
used if it is to be addressed by programs other than TUSTEP.

Regardless of whether a system variable has been previously
defined for the carrier specification or whether it is
automatically defined by TUSTEP, the user should make sure that
each of the corresponding directories actually exists. If not,
it must first be created at the operating system level. If the
operating system so permits, a directory specified by the
project name can also be created with the command #CREATE (see
page 79).

When working with temporary (scratch files a few additional
points should be kept in mind. In TUSTEP, temporary files are
named by the same conventions that apply to permanent files.
However, at the system level the files are assigned a name
different to that used within TUSTEP. To ensure that all scratch
files are arranged in the same directory, the project name
defined by the system variable TUSTEP_PRJ is always used in
place of the project name specified or pre-set for this file
when its name is converted. In addition, the names of scratch
files are replaced by a standardized one in order to avoid
conflicting names and to help identify scratch files as such at
the operating system level. Under DOS this standardized name

Basics - 42 - TUSTEP

takes the form mmmnnnnn.SCR, under UNIX and VMS the form
SCR.mmmnnnnn, where mmm is the number of the TUSTEP session and
nnnnn the running number assigned to the scratch file.

For example, if scratch files are to be located in a directory
called /tmp, the system variable TUSTEP_SCR must be defined with
the value /tmp. Then, all scratch files will be placed in the
directory /tmp/user, assuming that the system variable TUSEP_PRJ
has been defined as user, as shown in the above examples.

For the special case in DOS where only the letter of a drive is
assigned to the system variable used to specify the carrier,
with no other directories being specified, this process can be
simplified. Here the letter can be directly specified as the
carrier instead of being specified as a system variable.

System variable TUSTEP_LIB

The system variable TUSTEP_LIB must contain the carrier
specification for all TUSTEP programs and related files. Under
UNIX and VMS, the project assumed for these files and programs
is always tustep, under DOS it is always TUSTEP.LIB. Therefore,
if they are located in the directory /home/tustep or, for DOS,
in the directory C:\TUSTEP.LIB, TUSTEP_LIB must be assigned the
value /home or (for DOS) the value C:

System variable TUSTEP_MDS

The system variable TUSTEP_MDS must be given the value DIALOG
when TUSTEP is used in dialogue (i.e. interactive) mode. The
value BATCH is required for this variable when TUSTEP is used in
batch mode.

System variables TUSTEP_SET, TUSTEP_RST

These two system variables are only used under UNIX. The
contents of the system variable TUSTEP_SET is used to control
the keyboard and screen settings. The system variable TUSTEP_RST
records the keyboard and screen mode set before calling up
TUSTEP so that this mode can be reactivated upon exiting TUSTEP.
Both variables should only be defined by TUSTEP itself.

System variable TUSTEP_LPR

The system variable TUSTEP_LPR is only used under VMS and UNIX.
It defines the operating system instructions used for printing
in conjunction with the TUSTEP commands #MANUAL, #PRINT und
#JOURNAL. Prior to executing the operating system instructions,
the place keepers contained therein are replaced by TUSTEP with
the corresponding values. The following place keepers are
available for definition:

<DEVICE> for DEVICE secification
<COPIES> for COPIES specification
<USER> user name set with the command #DEFINE
<SUPPLEMENT> Contents of the system variables for the SUPPLEMENT

TUSTEP - 43 - Basics

specification
<FILE> Name of the internally-created file containing

printer control codes that are to be sent to the
printer. In case this place keeper is not present in
the operating system instruction, the name of the
file will be inserted at the end of the operating
system instruction.

System variable TUSTEP_SUB

The system variable TUSTEP_SUB is only used under VMS and UNIX.
It defines the operating system instruction for executing a
batch job with the command #EXECUTE. Before executing the
operating system instruction, TUSTEP replaces the place keeper
<SUPPLEMENT> with the contents of the system variables given in
the SUPPLEMENT specification. This can be used, for example, to
supplement a number of user options.

System variable TUSTEP_MEM

For each TUSTEP session a scratch file is created which records
information, e.g. which files have been opened, that is relevant
to the session in question. As with all scratch files, this file
is located in the directory specified by the system variables
TUSTEP_SCR and TUSTEP_PRJ. Since any number of sessions may
exist at the same time, TUSTEP has to know which file contains
the information pertaining to the session currently in progress.
To do so, TUSTEP defines the system variable TUSTEP_MEM, which
contains a reference number for this file which is written as an
8-digit number mmm00000, where mmm stands for the session
number. This number is at the same time part of the file às
standardized name given to it for use outside of TUSTEP. The
standardized name of such files has under DOS the form
mmm00000.SCR, under UNIX and VMS the form SCR.mmm00000. This
gives the user the possibility of continuing a session that has
not yet been ended with the command #RESET: here the system
variable TUSTEP_MEM is set to the appropriate value before
TUSTEP is called up. The user should make sure that the settings
of the other system variables correspond to those in force at
the time when the session to be continued was begun or
interrupted.

System variables TUSTEP_MT1, TUSTEP_MT2

If access is to be made to a magnetic tape the system variable
TUSTEP_MT1 must contain the name of the tape unit (e.g. under
UNIX /dev/rmt0, under VMS mua0). The system variable TUSTEP_MT2
must contain the name of the second magnetic tape unit if a
second magnetic tape unit is involved for purposes of copying
from one tape to another.

The system variables TUSTEP_MT1 and TUSTEP_MT2 can also be
replaced by system variables having another name. In this case,
however, the names of these system variables must be specified
in the commands that access the magnetic tape.

Basics - 44 - TUSTEP

The names assigned to magnetic tape units depend upon the
conventions established for each computing center or system
administrator.

Magnetic tape operations

Under VMS a tape unit must first be assigned before a magnetic
tape can be used. Under UNIX this is also necessary when working
with some computers. The appropriate operating system
instruction depends on the system being used. The relevant
instruction might appear as follows:

UNIX: tpmount -b -a /dev/rmt0 -s TAPE number
VMS: mount/foreign mua0: number $TAPE$

The number specified here corresponds to the tape number. This
reserves the tape unit for this purpose until it is slated for
another use. This should be carried out as rapidly as possible,
so that the tape unit is available for other users. Here the
operating system instruction might appear as follows:

UNIX: tpunmount -s TAPE
VMS: dismount mua0:

Please consult the respective computing system or system
administrator as to whether these two instructions are
mandatory.

System variables and TUSTEP sessions

As described in the chapter "TUSTEP Startup" (page 48), a TUSTEP
session starts with the callup of TUSTEP and ends at the
completion of the commando #RESET. If a TUSTEP session is
interrupted and later continued, it is of vital importance that
the system variables used when continuing TUSTEP have the same
values as those in force at the start or interruption of the
TUSTEP session.

The system variables TUSTEP_SCR, TUSTEP_PRJ and TUSTEP_MEM are
used to identify a TUSTEP session in that together they refer to
the file containing the relevant information.

If not defined when TUSTEP is called up, the system variables
TUSTEP_SCR and TUSTEP_PRJ will use the default settings.

For UNIX and VMS: if the system variable TUSTEP_MEM has not been
defined upon startup, a new TUSTEP session will be started. Here
a check is made as to which TUSTEP sessions, i.e. which files
having the name SCR.mmm00000 are present in directory defined by
the system variables TUSTEP_SCR und TUSTEP_PRJ. The new TUSTEP
session is thus assigned the smallest possible number that is
not yet used. If the system variable TUSTEP_MEM has already been
defined (valid here are only those values consisting of an
8-digit number whose last 5 digits are 0), the corresponding
TUSTEP session will be continued upon calling up TUSTEP. If,
however, the file having the corresponding name does not exit, a
new TUSTEP session will be started. This session will then be
assigned the number contained in the system variable TUSTEP_MEM.

TUSTEP - 45 - Basics

Since the system variable is lost upon each logoff of TUSTEP,
the system variable TUSTEP_MEM is no longer defined. In this
case, a new TUSTEP session will be started when TUSTEP is called
up, unless the system variable has not been explicitly
redefined.

If the system variable TUSTEP_MEM has not been defined at the
DOS level, it will be given the standardized value of 00000000.
This means that when calling up TUSTEP, the TUSTEP session will
be continued with the number 000. If it does exist, a new
session will also begin with the number 000.

A TUSTEP session can always be started or continued with a
particular number by setting the system variable TUSTEP_MEM in
the corresponding manner before calling up TUSTEP. A simpler
possibility of continuing a TUSTEP session where the system
variable TUSTEP_MEM is to be set to its corresponding value is
described in the chapter "TUSTEP Startup" (page 49).

Basics - 46 - TUSTEP

 T U S T E P S t a r t u p

 - 47 -

Survey:

Starting TUSTEP 48
Initializing TUSTEP 48
Starting a TUSTEP session 48
Interrupting a TUSTEP session 48
Continuing a TUSTEP session 49
Terminating a TUSTEP session 49

Basics - 48 - TUSTEP

Starting TUSTEP

TUSTEP is called up at the operating system level with the
following command:
tustep

At some computing centers TUSTEP cannot be started as described
above due to organizational reasons. In this case, the starting
command may be obtained from the information bulletin of the
respective computing center.

Before calling up TUSTEP you may wish to define the various
system variables for configuring the necessary TUSTEP functions.
The relevant information is detailed in the chapter "System
environment" (page 36) However, the default settings have been
set, or are set during installation, in such a way that TUSTEP
is fully operative when it is called up.

After being called up, the TUSTEP program now awaits TUSTEP
commands for the further processing or organization of data.

Initializing TUSTEP

TUSTEP is initialized at the start of every TUSTEP session. This
means that permanent files are opened and the temporary files
needed by TUSTEP for internal purposes are created.

In addition, TUSTEP user-information data TUSTEP user
information are shown at the first callup. This information can
also be obtained with the command #INFORM (cf. page 111).

TUSTEP then checks to see whether a start file already exists
(see page 50). If so, the commands contained in this file are
executed (any other type of data are not allowed in this file).

Starting a TUSTEP session

A new TUSTEP session is started when TUSTEP is called up and
thereby initialized after a new login. Under DOS a new TUSTEP
session is begun only if no other session exists.

Interrupting a TUSTEP session

Should it be necessary to interrupt TUSTEP in order to return
temporarily to the operating system level, type "*EOF" at the
TUSTEP command prompt.

To interrupt a session for an extended period of time under UNIX
and VMS, the user can log out, under DOS the PC can be turned
off.

TUSTEP - 49 - Basics

Resuming a TUSTEP session

An interrupted TUSTEP session can be resumed by restarting
TUSTEP in the same manner as described above.

If, however, a session can (or should) only be resumed after a
new logon, the following operation system instruction can first
be given:

tustep @

Specifying "@" after the TUSTEP command name produces a list of
all existing TUSTEP sessions. Besides containing the number of
each TUSTEP session, the list also displays the time when a
session was begun and when it was last used. In addition the
command #DEFINE can be used to specify a defined user name and
the corresponding user-defined default settings.

TUSTEP is then called up with the following operating system
command:

tustep n

where n is the number of the TUSTEP session that is to be
resumed. If this TUSTEP session is interrupted once again, it
can be resumed by calling up TUSTEP without any additional
specifications. If this session is interrupted in oder to
continue working with a different TUSTEP session, the number of
the desired session should be specified. A new TUSTEP session is
started by specifying a new number.

Terminating a TUSTEP session

A TUSTEP session is terminated by the command #RESET (see page
164).

Basics - 50 - TUSTEP

Start file

The start file consists of any commands that are meant to be
automatically executed at the start of a TUSTEP session (but not
for resuming a session). This file may not contain any other
data other than these commands. The start file has the name
*TUSTEP.INI and can be created and edited just like any other
TUSTEP file.

Some of TUSTEP às default settings have been established for
working with a mainframe computer and may not be the ideal
configuration in every case, for example, when working with a PC
under DOS. The following example shows three basic commands that
can be specified in the start file for a PC under DOS. In
general, these commands require no additional alterations by the
user.

#define,code=ibmpc
#wipe,off
#journal,portioned

These commands have the following effect:

- For screen output, it is assumed that the screen is capable of
displaying not only the characters in the TUSTEP 7-bit
character set, but special characters as well, e.g. German
umlauts and the double ss character. This setting is mandatory
under DOS when umlauts and a double s are used on a German
keyboard.

 If accented letters are also to be displayed in the Editor,
the code specification should not be "ibmpc", but rather
"cp437" or "cp850", depending on which "code page" has been
specified in the DOS configuration. If in doubt, both settings
can be experimented with; the correct setting can be then
easily ascertained by comparing the respective screen
displays. However, never specify a code that does not
correspond to the DOS configuration.

- When erasing files, their data are not to be erased
beforehand. For reasons of data security, TUSTEP normally
deletes the content of each file that is erased. This prevents
the restoration of a file às data. If this type of data
security is not required, it can be switched off with this
specification; this also spares the user the extra time
required to wipe files. This specification is also mandatory
if the contents of an erased file are to be restored at the
operating system level, e.g. with the DOS "undelete" command
(or with a similar utility program).

- During execution of a command sequence, the execution listing
is to be displayed screen by screen. This makes it easier for
the user to examine it and keeps it from scrolling off the top
of the screen before it can be read. This setting also lets
the user make corrections in the command input line (similar
to working with the Editor), as well as reshowing
previously-entered commands on the screen, where they can be
resent to the computer in either their old or newly-edited
forms. (cf. Entering commands, page 57).

TUSTEP - 51 - Basics

It is advisable to include Editor settings in the start file so
that the function keys, Editor macros and any other user needs
are automatically defined. This is done by including the
following command in the start file. Since the exact
specifications for this setting largely depend on the user às
personal needs and habits, the example below is merely given to
illustrate how such definitions may be written.

#edit,definitions=*

c --- character- and string-groups ---

>0z="()*,-./\>><<?
>0s=/%>0/%>0>0/
...

c --- Tabulator positions ---

t,,7 11 17

c --- Funktion keys ---

f21=x #for,<editor>,,lq,+ #pause #pri,,lq
...

c --- Parameters for search instructions ---

p1,aa=/*/
...

c --- Editor macros ---

y,d="Tübingen,", date_3
...

c --- Options (including color screen settings) ---

o=00501904 17 7E 1E 67 37 3E 17 7E 1E 67 6E 01 02 00 ...

*eof

For more details, see the command #EDIT (Seite 91) the chapter
"Editor" (starting on page 174).

Basics - 52 - TUSTEP

 C o m m a n d s

 - 53 -

Survey:

General information 55

Entering commands . 57

Interrupting command execution 61

CALL Calling a program 62
CLOSE Closing files 64
COLLATE Listing comparison results 66
COMPARE Comparing versions of the same text . 68
CONVERT Converting/encoding data/files 70
COPY Copying, selecting and modifying texts 75
CORRECT Executing correcting instructions . . 77
CREATE Creating files and projects 79
DEFINE Defining a macro file, variables, etc. 83
DUMP File analysis 90
EDIT Editing data files 91
ERASE Erasing data/deleting files 93
ERROR STOP Error stop toggle 96
EXECUTE Executing a sequence of commands . . . 97
FORMAT Formating texts (autom. layout) . . 101
GFORMS Generating forms 103
GINDEX Generating an index after sorting . 105
GLISTING Generating a listing of a text file 107
HELP Online help 109
INFORM Information about macro files, variables,
etc. . 111
INSERT Inserting text parts 114
JOURNAL Activating/deactivating journal files 116
LIST Listing file names, etc. 121
MACRO Creating command sequences 127
MANUAL Printing descriptions of TUSTEP commands
 . 128
MERGE Merging data/files 131
MTCOPY Copying data from one magnetic tape to
another . 132
MTINFORM Information about magnetic tapes . . 137
MTLABEL Adding or removing a magnetic tape label
 . 139
MTREAD Reading files from magnetic tape . . 141
MTWRITE Writing files onto magnetic tape . . 144
NUMBER Renumbering references 149
OPEN Opening files 151
PARAMETER Setting parameter mode 154
PAUSE Pause before executing remaining command
sequence . 155
PINDEX Preparing an index before sorting . 156
PRESORT Preparing data for sorting 158
PRINT Print output 160
RENAME Renaming files 163
RESET Resetting/terminating TUSTEP 164
RESTORE Restoring data from unfinished files 165
SORT Sorting data/files 167
STATISTICS Listing TUSTEP statistics 170
SWITCH Setting/clearing selection switches 171

Basics - 54 - TUSTEP

TIME Time 172
WIPE Wipe (overwrite) data 173

TUSTEP - 55 - Basics

General information

Each command begins with a hash mark (#) followed by the command
name. The command name can entered in abbreviated form (with or
without a period), but must contain at least the first three
letters of the command.

The command is usually followed by the specification values for
the respective specifications. Each specification has its own
specification name. Specifications are separated from each other
and from the command name by a comma. For some specifications,
more than one specification value is allowed, with each value
separated from each other by an apostrophe.

A specification may take the form of a value assignment. In this
case, the specification name is followed by an equals sign and
the specification value. Specification names can also be
abbreviated as long as the abbreviation is not ambiguous for the
respective command.

Specifications for a command are entered in the same order as
listed in the command às description. The specification name (and
equals sign) may therefore be omitted if this sequence is
adhered to. If the specification name (or its abbreviation) is
given, the normal sequence may be ignored. These two ways of
entering specifications may be combined within the same command.

If no value is given for a specification, the default setting
will be used. Default values are marked by an asterisk (*) in
the description of each command. Default settings may not be
redefined by the user; however, user-defined commands (macros)
may be defined with their own default settings.

A specification value may also be replaced by a previously
defined TUSTEP variable (cf. command #DEFINE page 85). The
variable às name must be placed in pointed brackets (<>).

A command can be written in one or in several lines (maximum: 80
characters per line). A new line may be started after each
comma, apostrophe or equals sign. It is not necessary to mark
continuation lines in commands.

Commands may be written in either lowercase or uppercase
letters. Blanks are insignificant and may be freely inserted as
desired.

The start of a comment is indicated by the number sign "#"
combined with an equals "=", a plus "+" or a minus sign "-". The
end of a comment is indicated by the next number sign located in
the same line or a number sign at the beginning of a subsequent
line. sign. Comments designated by a "=" will be recorded in the
journal (i.e. shown interactively on screen assuming their
output has not been suppressed (see #JOURNAL command on page
116). Comments designated with a "+" are always listed in the
journal; those designated with a "-" will not appear in the
journal.

Data to be processed or evaluated by commands are contained in
files. In the case of some commands, however, the data may also
be supplied directly after the command. In this case, an

Basics - 56 - TUSTEP

asterisk is given for the corresponding specification instead of
a file name. The data supplied after the command must be
terminated by a line beginning with *EOF.

In some commands the situation may arise where data following
the command contain lines starting with *EOF. To avoid having
such lines interpreted as the line which marks the end of data
input, such lines must be marked with an additional asterisk,
i.e. *EOF* instead of *EOF. When the data are read, the marker
(i.e. second asterisk) will be automatically removed. If such
lines are part of nested commands, it may be necessary to mark
an *EOF with more than one asterisk. A asterisk will be removed
with each successive pass until an unmarked *EOF remains, which
will be interpreted as the end of data input.

In the following example, a file with the name TXT will be
created. Then the editor will be called up to edit the file TXT
(in this case to add text to the file). In the next step, the
contents of the file TXT will be formated for a HP Laserjet Plus
printer (GER = printer output device, from the German word
Gerät"). The page number will be centered between two minus
signs at the top of each page (KT = "Kopftext" or header text).
Finally, the formated data will be printed on a HP LaserJet Plus
printer.

 #CREATE,TXT,SEQ-P #EDIT,TXT,T
 #FORMAT,TXT,ERASE=+,PARAMETER=*
 GER HP+
 KT / @z - XXX -/
 *EOF
 #PRINT,,HP+

To write the above command sequence into a file called CMD using
the command #CONVERT, for example, the following commands would
be given:

 #CONVERT,*,CMD,0,+
 #CREATE,TXT,SEQ-P #EDIT,TXT,T
 #FORMAT,TXT,ERASE=+,PARAMETER=*
 GER HP+
 KT / @z - XXX -/
 EOF
 #PRINT,,HP+
 *EOF

Here an asterisk must be added to the *EOF which terminates the
parameters for the command #PRINT (in the line preceding #PRINT)
so that the command #CONVERT does not interpret it as marking
the end of data input. This marker asterisk will be removed by
#CONVERT so that the file CMD will contain the line *EOF. The
*EOF located after #PRINT terminates the data for the command
#CONVERT and will not be written to the file CMD.

TUSTEP - 57 - Basics

Entering commands When the prompt

Enter command >

appears, the TUSTEP program awaits commands which tell it which
action it should perform. Once a command is typed in, it must
then be sent to the computer by pressing the ENTER key, upon
which the command will be interpreted and executed.

If a command line ends with a comma, an apostrophe or an equals
sign, it will be assumed that the command is yet incomplete and
will be continued. The prompt

Enter specifications >

means that the command às related specifications are being
awaited. If at this point there is nothing to add to the
command, an empty input line may be sent by pressing the ENTER
key.

Some programs expect additional data (e.g. parameters)
immediately after being called up. Depending on their specific
function, these data are requested by various input prompts.
Each line must be sent individually with the ENTER key. The end
of data input is signaled to the program by sending a new line
starting with *EOF.

The 20 most recently entered lines are stored in a buffer. They
can shown on screen as a complete list for the user às
information, or retrieved on screen individually where they can
be sent to the computer after making any necessary alterations.

To aid the user in command input, there are a number of control
commands (i.e. editing keys) at his disposal. Each control
command has a short name which can be referred to in the tables
listed on pages 230 to 239. Listed in these tables are the key
or key combinations required to activate each control command
for most major of keyboard types.

However, these control commands will not have the effects
described below unless the journal mode has been set to either
"portioned" or "continuous" with the command #JOURNAL (see page
116). If this has not been done, or if the mode has been set
back to "system", the only control commands at the user às
disposal are those available at the operating system level.

RESHOW "Reshow commands"

Lists the last 20 command lines entered.

CUR_UP Cursor up

Displays the most recent line entered. Can be used
to scroll backwards through the list of the 20 most
recent lines entered.

Basics - 58 - TUSTEP

CUR_DN Cursor down

Displays the line that was entered after the line
presently shown. After scrolling backwards with
CUR_UP this key scrolls forward through the list of
the 20 most recent lines entered.

CUR_RI Cursor right

Moves cursor one character to the right.

CUR_LE Cursor left

Moves cursor one character to the left.

TAB "Skip to next tabulator"

Moves cursor to the next tab stop. Tabulator
positions are 11, 21, ..., 71.

SKP_BEG "Skip to start of line"

Moves cursor to the beginning of the command line.

SKP_END "Skip to end of line"

Moves cursor to the end of the command line.

SKP_WORD "Skip to next word / end of line"

Moves cursor to the beginning of the next word. If
the cursor is already located at the last word, it
moves to the end of the line. And if the cursor is
already at the end of the line, this moves it to
the beginning of the line. A "word" is any
character string surrounded by a blank and/or
comma.

TGL_INS "Toggle insert mode / replace mode"

Switches back and forth between replace mode and
insert mode. In replace mode, existing characters
will be overwritten; in insert mode, newly entered
characters are inserted at the present cursor
position, with any characters located at or to the
right of the cursor being moved to the right.

DEL Delete: "Delete character"

Deletes the character at the present cursor
position, moving all remaining characters in the
line one position to the left.

BSP Backspace: "Delete character"

Deletes the character to the left of the current
cursor position, moving all remaining characters in
the line one position to the left. The cursor also
moves one position to the left.

TUSTEP - 59 - Basics

TGL_DEL "Toggle delete mode / backspace mode"

Switches back and forth between delete mode and
backspace mode. In delete mode the DEL key has the
effect described in DEL above. In backspace mode
the DEL key has the same effect as BSP.

CLEAR "Clear line"

Deletes input line

ENTER "End of input"

The command or data entered in the command line are
now sent to the computer.

CR Carriage return: "End of input"

Same as ENTER.

REFRESH "Refresh line"

Restores the contents of the input line that have
been disrupted by system messages, transmission
line interference, etc.

CANCEL "Cancel input" / "terminate TUSTEP"

- when entering data: terminates data entry; any
data still located in the input line will be
ignored.

- otherwise: ends (interrupts) TUSTEP session; any
data still located in the input line will be
ignored.

In addition to the keys or key combinations described here to
carry out these control commands, the user may also use the
fuction keys. For a list of default definitions and instructions
on how to redefine function keys, refer to the command #DEFINE
on page 83).

For repeatedly-used commands it is advisable to write them to a
file with the help of the Editor. You can then execute the
command sequence whenever necessary with the command #EXECUTE
(see Page 97) without having to type them each time. In this
case, you merely have to to specify the name of this file in the
command #EXECUTE.

The same applies to commands which require the subsequent input
of data, e.g. parameters. By having such commands placed in a
file, any typing error which makes it necessary to repeat the
command can be corrected in the file where it occurs (instead of
having to reenter all parameters by hand) and the command
#EXECUTE can then be repeated.

The most advantageous method of recording such command sequences
is to save each command sequence as a segment in a single
segment file instead of saving each one in a file of its own.

Basics - 60 - TUSTEP

This is done in the Editor, where each command sequence, after a
satisfactory trial run, is written as a segment to a segment
file with the Unload instruction (see page 187). The Editor is
also used to correct a segment, where it is copied to a
temporary file with the Load instruction (see page 186),
corrected, and then copied back to the segment file with the
Unload instruction. A command sequence located in a segment can
also be executed with the #EXECUTE command. Here the name of the
segment file is followed by the name of the individual segment.

If a slight modification must be made to a command sequence
before it is executed, it can be given place keepers (registers)
which are then replaced by the desired specifications when
#EXECUTE is called up. Advanced users, however, are encouraged
to use command macros (see "Macros" chapter starting on page
266). When used in macros, command sequences can be modified in
a variety of ways besides merely the specifications present when
the macro is started. For instance, they can also be dependent
on responses given to questions contained in the macro.

TUSTEP - 61 - Basics

Interrupting command execution

It is often advisable to interrupt the execution of a program,
command sequence or Editor instruction. (For example, if the
wrong file has been specified for input.) This is carried out by
the control command INTRPT. Please refer to the corresponding
key combination for your particular keyboard as listed in the
tables on pages 230 to 239.

Ater the operating system has informed TUSTEP of the interupt,
TUSTEP responds with the prompt:

PROGRAMM INTERRUPTION - Enter instruction >

Five different specifications are possible here, each consisting
of a single letter. They determine how the interrupted program
is to proceed.

1) A (Abort) The interrupted program is to be ended (aborted)
immediately. Any remaining commands are to be executed
afterwards, providing that instruction C has not already
been entered.

2) H (Hold) Upon completion of the interrupted program (but
before performing any subsequent commands), priority
commands priority commands shall be executed as entered
individually (!). If an empty entry line is sent instead of
a priority command, the interrupted command sequence will
be continued.

3) C (Cancel) Any remaining commands will be canceled, i.e. not
executed.

4) I (Interrupt) The Editor instruction which is presently being
executed will be interrupted, with a prompt appearing for
the next Editor instruction. In case no Editor instruction
is being processed at the time the interruption is made,
this instruction has the same effect as instruction G.

5) G (Go) The interrupted program will be resumed.

The instructions H and C require an additional instruction
immediately. Thus these two instructions can be combined with
one of the other remaining instructions.

There are other ways of interrupting a command sequence in
progress (this option does not apply to a program or Editor
instruction being executed) that are offered by the commands
#PAUSE (see page 155), #ERROR STOP (see page 96) and #MACRO (see
page 127 as well as the chapter "Macros" page 266).

 - 62 -

Calling a program

CALL

Command:

#CALL

Specifications:
PROGRAM = name Name of the program to be called

READ = n:file Logical number n to be assigned to the
specified file. The file must be a TUSTEP
file and must be opened for reading or
writing. More than one specification
value is allowed.

= - * No logical number is to be assigned to a
file

WRITE = n:file Logical number n to be assigned to the
specified file. The file must be a TUSTEP
file and be opened for writing. More than
one specification is allowed.

= - * No logical number is to be assigned to a
file

CARRIER = -STD- * The program to be called is located on
the carrier specified at the operating
system level. Under DOS, UNIX and VMS,
the carrier for programs that are called
up with this program has been specified
with the system variable TUSTEP_DSK.

= name Under DOS, UNIX and VMS: name of the
system variables containing the path of
the program to be called. Under DOS the
drive letter can be specified here as
long as the path does not contain any
directory names.

Features:

With this program, FORTRAN programs may be called which use
TUSTEP subroutines (at least the subroutines INIT and EXIT). If
TUSTEP subroutines are used for input and output in such a
program, a file name must be assigned to each logical number
used in this program.

The syntax used for the program name depends on the operating
system being used:

TUSTEP - 63 - Basics

 BS2000: filename

 DOS: TUSTEP.PRG*Execname

 MVS: filename(membername)

 UNIX : filename

 VM/CMS: modulename

--- VMS : filename

For the TUSTEP subroutines there is a special description with
the name SR (cf. command #MANUAL on page 128).

 - 64 -

Closing files

 CLOSE

Command:

#CLOSE

Specifications:
FILE = file Name of the file to be closed. More than

one file name is allowed.

= - * No files to be closed.

= + Files selected with the specifications
PROJECT/CARRIER/POSITIVE/NEGATIVE are to
be closed.

PROJECT = name Name of the project whose files are to be

closed.

= + Files from the current project are to be
closed.

= -STD- Files of the project specified at TUSTEP
initialization are to be closed.

= - * No files of any project are to be closed.
CARRIER = name Under DOS, UNIX and VMS: name of the

system variable containing the path
specification of the file to be closed.
Under DOS the drive letter can also be
specified when the path does not contain
any directory names.

= - * No file of any carrier (disk or disk
drive) is to be closed

POSITIVE = * No positive selection by character
strings occurring in file names

= ... Only those files are to be closed whose
filenames contain at least one of the
specified character strings.

NEGATIVE = * No negative selection by character
strings occuring in file names

= ... Only those files are to be closed whose
filename does not contain any of the
specified character strings.

WIPE = + Data contained in temporary files to be
closed and thus later erased are to be
erased beforehand.

 - 65 -

= - Data contained in temporary files to be
closed and then erased need not to be
erased.

Features:

This command is used to close files. This prevents the
inadvertent access of subsequent TUSTEP programs to these files
(e.g. due to typing errors).

To close all files opened of a particular project, simply enter
"+" for the specification FILE and the name of the project for
the specification PROJECT. Likewise, all opened files of a data
carrier can be closed by entering the name of the disk or disk
drive in the specification CARRIER. If both specifications have
been given, all opened files of the given project on the given
data carrier will be closed.

To close all files whose name contains a particular character
string, these character strings should be entered in the
specification POSITIVE which must occur at least once in the
file name for the file to be closed. The specification NEGATIVE
can be used to specify character strings which must not be
contained in the file name for the file to be closed. For a full
description of this feature, refer to the command #LIST on page
121.

Temporary files (scratch files) will be automatically erased,
and storage space will be made available for other files. The
specification WIPE can be used to specify whether the data in
such files are to be erased beforehand. If nothing is specified
here, the data will be erased if no other mode has been selected
with the command #WIPE (cf. page 173).

Special applications for the MVS version

Permament (cataloged) files which are closed become immediately
accessible for other jobs. This is important when the same file
is to be accessed by more than one job, since a permanent file
can be opened for reading by any number of jobs but opened for
writing by only one job.

Basics - 66 - TUSTEP

Listing comparison results

 COLLATE

Command:

#COLLATE

Specifications:
SOURCE = file Name of the input file containing the

basic text

MODE = -STD- * Each CORRECTION file contains the
correcting instructions for a single text
version.

= CUMULATED The CORRECTION file contains the
correcting instructions for all text
versions.

ERASE = - * If the LISTING already contains data,
they are to be retained.

= + If the LISTING already contains data,
they are to be erased beforehand.

PARAMETER = file Name of the file with the parameters

= * Parameters follow the command and are
ended by *EOF.

CORRECTION = file Name of the file containing the
correcting instructions (with correction
key). If MODE=-STD-, more than one file
name is allowed.

m,2
LISTING = -STD- * The generated list is to be written to

the standard LISTING.

= file Name of the file to which the generated
list is to be written

Features:

With this command, a listing of the differences between one or
several text versions and a basic text can be generated for
printing in lines synoptic to the basic text. The differences
must be provided in form of correcting instructions containing a
correction key, as generated by the TUSTEP programs COMPARE or
PRESORT. The deviant words (variants of the different text
versions) are listed in synoptical lines under the respective
words of the basic text. Identical text passages found between
the basic text and the other text versions as well as between
the variants themselves are marked as such.

TUSTEP - 67 - Basics

Description:

For this command, there is a special description with the name
CO (cf. command #MANUAL page 128).

 - 68 -

Comparing versions of the same text

 COMPARE

Command:

#COMPARE

Specifications:
VERSIONA = file Name of the input file containing text

version A

VERSIONB = file Name of the input file containing text
version B

MODE = T The differences between the texts are to
be listed

= C The generated correcting instructions are
to be listed

= ... Printer type used to print out the list
of text differences. The type of printer
available depends on the actual computer
being used To obtain a list of these, use
the command #LIST,PRINTERS (see page
121).

The printer type can also be entered as a
parameter specification.

ERASE = - * If the CORRECTION file or the LISTING
contain data, the data is to be retained.

= + If the CORRECTION file or the LISTING
contain data, the data is to be erased
beforehand.

PARAMETER = - * No parameters

= file Name of the file containing parameters

= * Parameters follow the command and are
ended with *EOF

CORRECTION = - * Do not record correcting instructions

= file Name of the output file to which the
correcting instructions are to be written

LISTING = - * No printer output for listing differences

= + The generated listing is to be written to
the journal (i.e. the screen when in
interactive mode).

TUSTEP - 69 - Basics

= -STD- The generated listing is to be written to
the standard LISTING file.

= file Name of the file into which the generated
listing is to be written.

Features:

This program is used to compare two text versions (A and B). The
differences are listed in the file entered in the specification
LISTING. In addition, these differences can be written to the
file entered in the specification CORRECTION in the form of
correcting instructions, using the same conventions for
correcting instructions as required for the program CORRECT. If
this file is used to correct version A, version B will be the
result (the line division and the record numbers will be those
of version A).

The line division of the versions may be entirely different.
Omissions and insertions up to the length of one typed page can
be identified by the program automatically (although this
process consumes a disproportionately large amount of CPU time).
The program can handle ommissions and insertions of any length,
provided these are identified and indicated by the user. It is
also possible to compare only certain ranges of the files.

Description:

For this command, there is a special description with the name
CM (cf. command #MANUAL page 128).

Basics - 70 - TUSTEP

Converting/encoding data/files

 CONVERT

Command:

#CONVERT

Specifications:
SOURCE = file Name of the file containing the data to

be converted

= -STD- The data to be converted are contained in
the standard TEXT file

= * The data to be converted follow the
command #CONVERT and are ended by *EOF.

DESTINATION= file Name of the file to which the converted
data are to be written

= -STD- The converted data are to be written to
the standard TEXT file

MODE = ... The data are to be converted using the
mode specified here (see below).

= -STD- * corresponds to the specification
+1 if the SOURCE file is a system file

and the DESTINATION file is a TUSTEP
file.

-1 if the SOURCE file is a TUSTEP file
and the DESTINATION file is a system
file.

 0 in all other cases.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

KEY = - * The data are not to be encoded or
decoded.

= file Name of the file containing the key for

= * The key for encoding or decoding follows
the command #CONVERT and is ended by
*EOF.

CODE = - No additional code conversion however,
data from a system file is copied into a
TUSTEP file or vice versa, the code of
the data is to be converted in the same

 - 71 -

way for input and output on the display
device.

= xx:yy The character with the hexadecimal code
xx is to be converted to the character
with the hexadecimal code yy. More than
one pair of codes is allowed.

= TUSTEP The data code is to be converted in the
same manner used for input from the
display device. Additional codes or
exceptions to the conversion mode can be
specified by additional hexadecimal code
pairs (xx:yy). If the data contain
unknown codes, these codes will be
converted to character strings having the
form "#[xx]".

= SYSTEM The code of the data is converted in the
same manner as used for output to the
display device. Additional codes or
exceptions to the current conversion mode
can be specified by additional
hexadecimal code pairs (xx:yy). Any
character strings in the data having the
form "#[xx]" will be converted into a
single character.

= -STD- * corresponds to the specification
TUSTEP if the SOURCE file is a system

file and the DESTINATION file is a
TUSTEP file.

SYSTEM if the SOURCE file is a TUSTEP
file and the DESTINATION file is a
system file.

- in all other cases.

= ASCII The data are to be converted from EBCDIC
to ASCII. The code conversion table (cf.
page 354) may be modified by defining
additional pairs of xx:yy codes.

= EBCDIC The data are to be converted from ASCII
to EBCDIC. The code conversion table (cf.
page 354) may be modified by defining
additional pairs of xx:yy codes.

NL = -STD- * The usual codes of the respective
operating system (DOS: CR LF = 0D0A,
UNIX: LF = 0A) are to be used as the
delimiter character between data records
in system files.

= xx The character having the hexadecimal code
xx is to be used as the delimiter
character between data records in system
files.

Basics - 72 - TUSTEP

Warning:

Encoded data may not be saved to system files. Depending on the
respective operating system, this could prevent the data from
being decoded later, or could result in undefined errors. In
addition, whenever encoding data, make sure that the destination
file is either empty or that ERASE=+ has been specified in the
command.

Features:

With this command data are converted or recoded according to the
rules given for the specifications MODE and CODE. If so desired,
they will be additionally encoded or decoded according to the
key given in the specification KEY.

The files given for the specifications SOURCE and DESTINATION
can be of the same type (system file or TUSTEP-file) or of
different types. Thus it is possible to copy the contents of a
system file to a TUSTEP file and vice versa.

If converting with CODE=TUSTEP (this is the default setting for
copying a system file to a TUSTEP file) the data are transcribed
in the same manner as defined by the command #DEFINE (see page
83) for input from the display device. Characters not defined
for the code selected will be converted to the form "#[xx]",
where xx stands for a character às hexadecimal code.

Conversely, when converting with CODE=SYSTEM (this is the
default setting for copying a TUSTEP file to a system file) the
data are transcribed for the output to the display device.
Character strings having the form "#[xx]", where xx is a
hexadecimal code from 00 to FF, will be converted into the
character corresponding to this code.

An encoded file is decoded by reconverting the file with the
same key used for encoding. The key is a character string at
least 40 and at most 400 characters long, and is defined by the
user.

The order in which the data are processed according to the
specifications MODE, KEY and CODE depends on the value given for
the specification MODE. The order is
CODE - MODE - KEY for modes +0, +1, +2, +4, XT, XB, TK, but
KEY - MODE - CODE for modes -0, -1, -2, -3, -4, TX, BX, and KT.
If MODE=0, only one of the specifications KEY and CODE may have
a value other than "-" ("-STD-" may also be given for CODE if
this corresponds to CODE=-).

Modes:

 0 No conversion of data and no checking for illegal
characters

+0 Data are not to be converted; check only whether individual
characters (not character combinations) are accepted by
TUSTEP.

TUSTEP - 73 - Basics

-0 Data are not to be converted; check only whether individual
characters (not character combinations) are accepted by
TUSTEP.

+1 Characters encoded with the escape character "^" followed
by a 7-bit ASCII character from the TUSTEP character set
are converted into the respective TUSTEP characters (cf.
code tables on pages 298 und 299).
Example:

"Er l^oste die TUSTEP-^Ubungsaufgabe gro^sartig"
is converted to
"Er löste die TUSTEP-Übungsaufgabe großartig".
("He solved the TUSTEP exercise excellently.")

-1 Reverses n=+1. Characters from the 8-bit TUSTEP character
set are replaced by an input code consisting of the
character "^" and a character from the 7-bit TUSTEP
character set (cf. character tables on page 299).

+2 As in n=+1; in addition, if nothing else is indicated by the
shift character "<", all alphabetic characters are converted to
lowercase letters. If the data contain the character "<",
alphabetic characters following this character are converted to
uppercase characters. The character ">" cancels the effect of
the character "<", i.e. alphabetic characters are converted back
to lowercase letters. The characters "<" and ">" are not
transfered. If the characters "<" or ">" are to be represented,
they must be encoded by "<<" or ">>".

Example: The sentence
"<E>R L^OSTE DIE <TUSTEP>-<^U>BUNGSAUFGABE GRO^SARTIG"
is converted to
"Er löste die TUSTEP-Übungsaufgabe großartig".

-2 Reverses n=+2. The shift-characters "<" and ">" are
inserted before and after one or more uppercase characters.
If the characters "<" and ">" are encountered here, they
will be doubled. In addition, characters from the 8-bit
TUSTEP character set will be replaced by the input code
consisting of the character "^" and a character from the
7-bit TUSTEP character set (cf. character table on page
298).

-3 "<" is inserted before each upper case character. If the
characters "<" and ">" are encountered, they will be
doubled. In addition, characters from the 8-bit TUSTEP
character set will be replaced by the input code consisting
of the character "^" and a character from the 7-bit TUSTEP
character set (cf. character table on page 298).

-4 Data are to be converted to their hexadecimal form (each
character is given its hexadecimal code specification from
00 to FF).

+4 Reverses -4. Every 2 characters will be interpreted as a
hexadecimal code specification and converted into the
character having the corresponding code. The data must be
written as hexadecimal pairs.

Basics - 74 - TUSTEP

TX The text data from the SOURCE file are to be written to the
DESTINATION file in data exchange format.

XT The data in the SOURCE file are written in data exchange
format and are to be written to the DESTINATION file as
text data.

BX The binary data in the SOURCE file are to be written to the
DESTINATION file in data exchange format.

XB The data in the SOURCE file are written in data exchange
format and are to be written to the DESTINATION file as
binary data.

TK The text data in the SOURCE file are to be written to the
DESTINATION file in compressed form.

KT The data in the SOURCE file are written in compressed form
and are to be written to the DESTINATION as (decompressed)
text data.

Restrictions

If a system file has been entered for the specification
DESTINATION, it must be empty or ERASE=+ must have been given so
that the data in this file are erased. Data may be appended to
the end of a file for TUSTEP files only.

Due to the structure of system file, the specification NL can
only be used under DOS and UNIX.

 - 75 -

Copying, selecting and modifying texts

COPY

Command:

#COPY

Specifications:
SOURCE = file Name of the file containing the data to

be copied

= -STD- The standard TEXT file contains the data
to be copied.

DESTINATION= file Name of the file to which the data are to
be copied. More than one file name is
allowed.

= -STD- The data are to be copied to the standard
TEXT file.

MODE = -STD- * Retain numbering of records if possible

= + Renumber records

= - Retain numbering of records in all cases

= S DATA file contains sort units

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

PARAMETER = - * No parameters

= file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

DATA = - * SOURCE file contains records in their
entirety.

= file Name of the file containing the text part
of each record

= -STD- The standard DATA file contains the text
part of each record

LISTING = - * No output of trace (test protocol)

Basics - 76 - TUSTEP

= + Trace (test protocol) is to be written to
the journal

= -STD- Trace (test protocol) is to be written to
the standard LISTING.

= file Name of the file to which the trace (test
protocol) is to be written

Features:

With this program, files can not only be copied, but also
processed in a variety of ways.

Parameters can be used to:

- examine data

- select data

- move and expand individual text parts

- replace character strings

- process calendar dates

- calculate numerical values contained in the text

- control the form of output

Description:

For this command, there is a special description with the name
CP (cf. #MANUAL, page 128).

TUSTEP - 77 - Basics

Executing correcting instructions

 CORRECT

Command:

#CORRECT

Specifications:
SOURCE = file Name of the file containing the data to

be corrected

= -STD- The standard TEXT file contains the data
to be corrected.

DESTINATION= file Name of the file to which the corrected
data are to be written

= -STD- The corrected data are to be written to
the standard TEXT file.

MODE = -STD- * Retain numbering of records if possible

= + Renumber records (in text mode)

ERASE = - * If the DESTINATION file or LISTING
already contain data, these data are to
be retained.

= + If the DESTINATION file or LISTING
already contain data, these data are to
be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

CORRECTION = file Name of the file containing the
correcting instructions

LISTING = - * No protocol is to be recorded; only error
messages are to be written into the
journal.

= -STD- The correction protocol is to be written
into the standard LISTING.

= file Name of the file to which the correction
protocol is to be written

Features:

Basics - 78 - TUSTEP

This program is used to correct texts without using the editor.
Correcting instructions contained in a file or supplied after
the command #CORRECT are used to replace, erase or insert

- lines (e.g. line 2 on page 3)

- words (e.g. the second word in line 3 on page 4)

- characters (e.g. the second character in line 3 on page 4
or the second character of the third word in line 4
on page 5).

A list of the executed corrections is provided if so desired.

Note

The correcting instructions for this program are generally
created with the command #COMPARE (see page 68) and then
adjusted accordingly.

Description

For this command, there is a special description with the name
CR (cf. #MANUAL, page 128).

TUSTEP - 79 - Basics

Creating files and projects

 CREATE

Command:

#CREATE

Specifications:
NAME = name Name of the file or project (directory)

to be created. More than one file or
project name can be specified.

TYPE = type Type of file to be created.

= type-opt Type of the file to be created, with
additional options

The following values can be given for
type:

* SEQ TUSTEP file with sequential access

RAN TUSTEP file with random access (not
yet implemented)

SDF system file in system-data format

The following can be given for opt:

A Open file if it already exists

* T Temporary file

P Permanent file

F Fixed record length

For additional information concerning
options, see below.

= PROJECT Creates a project (directory) having the
name given for the specification NAME

CARRIER = -STD- * The file or project is to be created on a
data carrier (disk or disk drive) set by
the operating system. Unter DOS, UNIX and
VMS, the carrier for projects and
permanent files is preset by the system
variable TUSTEP_DSK. For temporary
(scratch) files the system variable
TUSTEP_SCR is used.

= name Under DOS, UNIX und VMS: name of the
system variables which contain the path
specification for the file or project to

Basics - 80 - TUSTEP

be created. Under DOS, merely specifying
the letter of the drive is sufficient
here as long as the path specification
contains no directory names.

LENGTH = n The average length of records is n
characters.

= 60 * The average length of records is 60
characters.

= +n/-n The average record length is n characters
longer/shorter than the average record
length of the file entered for the
specification FILE.

= +n%/-n% The average record length is n%
longer/shorter than the average record
length of the file entered for the
specification FILE.

RECORDS = n Number of records is n.

= 100 * Number of records is 100.

= +n/-n The number of records is n records
greater (+n) or less (-n) than the number
of records in the file given in the
specification FILE.

= +n%/-n% The number of records is n% greater (+n%)
or smaller (-n%) than the number of
records in the file given in the
specification FILE.

FILE = file Name of the file referred to by the
relative values (+n/ -n and +n%/-n%)
given in the specifications LENGTH and
RECORDS.

= - * The values given for the specifications
LENGTH and RECORDS are absolute numbers.

Features:

This command is used to create files. New files are time
automatically opened for writing (cf. command #OPEN).

TUSTEP programs accept only TUSTEP files (TYPE=SEQ or TYPE=RAN).
However, system files (TYPE=SDF) can also be specified in the
the program #CONVERT and in the Editor instructions "Load" and
"Unload".

The type of file to be created can be defined in more detail by
specifying one of the options listed below. These options
(single letters) are placed after the type name and separated
from it by a hyphen "-" (e.g. SEQ-T).

 - 81 -

This command can also be used to create projects (directories)
for managing your files. By organizing files under various
project names, they can be compiled as logical groups (e.g. all
files relating to each task area), giving the user a much
clearer overview of all existing files.

Options for all versions:

If no option is entered, the default option T is used. If
options are specified, either T or P must be included. Multiple
options must be given in the order listed below. No delimiter
character is required between options.

A The program will try to open the specified file for
writing. If the file does not yet exist, it will be created
in accordance with the additional option specified.

T Temporary file (scratch file)

P Permanent (cataloged) file

Additional option for the MVS and VM/CMS versions:

F Fixed record length (for system files only)

Notes

Up to 100 files (excluding those files used by TUSTEP
internally) can be opened in a TUSTEP session. This also
includes files created with the command #CREATE in the same
session. If this limit is reached, existing files must either be
closed with the command #CLOSE (cf. page 64) or erased with the
command #ERASE (cf. page 93) before any new files can be
created.

Hints:

The specifications concerning file size (specifications LENGTH,
RECORDS and FILE) are irrelevant for the creation of projects.

When creating files these specifications are required in the MVS
version only. Under this operating system, a file will be
created according to the specified size and cannot be enlarged
later. Should the file become too small, the following steps may
be of assistance:

- create a new, larger file with another name
- copy the data from the old file to the new one
 (using the command #RESTORE, see page 165)
- erase the old file
 (using the command #ERASE, cf. page 93)
- change the name of the new file to that of the old file
 (using the command #RENAME, cf. page 163)

In the BS2000 and the VMS version, file size specifications are
not required since files are automatically enlarged whenever

Basics - 82 - TUSTEP

necessary. However, it is recommended to specify the anticipated
file size, thus causing a physically contiguous area to be
allocated to the file. Accessing a file occupying a contiguous
area is much more efficient than accessing one which must be
enlarged and therefore becomes increasingly fragmented.

File size specifications have no effect in the MS-DOS and VM
versions of TUSTEP. Here files are automatically enlarged when
necessary.

Restrictions:

A file and a project having identical names cannot be located on
the same carrier.

File names having the notation "TUSTEP.xxx" (where xxx stands
for any combination of letters or digits) are reserved for
TUSTEP and may not be used in creating files. But there are two
exceptions to this:

The file name "TUSTEP.INI" is reserved for the start file
containing commands to be executed whenever TUSTEP is
initialized (cf. page 48). The file name "TUSTEP.USE" is
reserved for a file in which user statistics about TUSTEP are
recorded (cf. command #STATISTICS page 170).

TUSTEP - 83 - Basics

Defining a macro file, variables, u.a.

 DEFINE

Command:

#DEFINE

Specifications:
MACROS = file Name of the macro file containing the

command macros to be executed later.

= - * Do not switch to another macro file

VARIABLES = file Name of the file containing the
definitions of TUSTEP variables

= * Definitions of TUSTEP variables follow
the command #DEFINE and are ended by
*EOF.

= - * No TUSTEP variables to be redefined.

PROJECT = name Project name assigned to the file names.

= -STD- The project name used at TUSTEP
initialization is to be assigned to the
file names.

= - * Retain defined project name.

USER = name User name to be printed on the cover
sheets of printouts

= - * Retain defined user name

CODE = - * Retain defined code for input and output
on the display device

= ASCII Display device uses the international
ASCII character set (see table on page
345); it is not necessary to alter the
coding.

= EBCDIC Display device uses the US-EBCDIC
character set (see table on page 353);
the coding is to be altered as described
below.

= GERMAN Display device uses the German ASCII or
EBCDIC character set (see table on page
346 and page 353, respectively); the
coding is to be altered as described
below.

 - 84 -

= DECMCS Display device uses the DEC multinational
character set.

= IBMPC Display device uses the IBM-PC character
set (see table on page 347)

= CP437 Display device uses the character set
defined by code page 437 (see table on
page 348)

= CP850 Display device uses the character set
defined by code page 850 (see table on
page 349)

= ISO8859 Display device uses the character set
corresponding to the ISO standard 8859
(see table on page 351)

= xx:yy On input from the display device, a
character with hexadecimal code xx is to
be converted to a character with
hexadecimal code yy; before being
displayed, a character with hexadecimal
code yy is to be converted to a character
with hexadecimal code xx. More than one
pair of codes may be specified.

FUNCTIONS = file Name of the file containing the
definitions for function keys

= * The definitions for function keys follow
the #DEFINE command and are ended with
*EOF.

= - * Retain present function key definitions

Features:

This command can be used to:

- establish which file contains the command macros (see page 55)
which (in addition to standard macros) are to be subsequently
used.

- define TUSTEP variables to be used in commands (see page 55)
and in command macros (see the chapter entitled "Macros",
starting on page 266).

- redefine the name of the project assigned to the file.
redefined. This project name is used unless a different
project name is given with a file name in a TUSTEP command.

- redefine the user name printed on the cover sheet of
printouts.

- establish rules for altering the character coding for the
input and output on the display device. After initialization,
TUSTEP assumes that the display device uses the international
ASCII character set.

 - 85 -

- define function keys as used at the command level (not for the
Editor).

Note:

The current settings/definitions can be displayed with the
command #INFORM (see page 111).

German keyboard code

If a German keyboard (with umlauts) is used, this command must
be given to set the code required for the respective operating
system:

BS2000: CODE=GERMAN UNIX: CODE=GERMAN
DOS: CODE=IBMPC VMS: CODE=DECMCS
MVS: CODE=GERMAN VM/CMS: CODE=GERMAN

The DOS page codes CP437 or CP850, which also contain German
umlauts, can also be set as an alternative to the IBMPC code
setting. If TUSTEP is not accessed on a local PC but rather on a
remote computer via a terminal emulation program, the same code
can be set as if working with a local computer (depending on the
emulation being employed). However, it may be necessary to set
CODE=ASCII and to refrain from using umlaut characters on the
keyboard.

Should a particular code be set whenever TUSTEP is initialized,
the corresponding command can be written in the start file.
However, if different screens are employed, this is only
appropriate when the same code has been set for all display
devices.

If an interrupted TUSTEP session is to be resumed on another
screen, it may be necessary to set the proper code for this
screen.

Altering codes:

The following table is read as follows: the character on the
left is the character whose TUSTEP code is sent to the computer
from the display device; the character on the right is the
intended character entered at the display device and whose code
must therefore be generated from the incoming code.

- For CODE=EBCDIC the following characters are recoded as shown
below:

 ! <---> | | <--->]] <---> !

 For a computer with EBCDIC CODE this corresponds to the
specification

 CODE=4F:6A à6A:5A à5A:4F

Basics - 86 - TUSTEP

 For display devices using the US-EBCDIC character set (which
in contrast to the international EBCDIC character set features
no square brackets) substitute characters must be used for the
following TUSTEP characters:

 [= Cent] = broken vertical bar ^ = logical NOT

- For CODE=GERMAN coding of the characters below is altered as
follows:

 [<---> Ä \ <---> Ö] <---> Ü
 { <---> ä | <---> ö } <---> ü tilde <---> ß

 For computers with ASCII CODE this corresponds to the
specification

 CODE=5B:C1 à5C:CFà5D:D5à7B:E1 à7C:EFà7D:F5 à7E:F3

 and for a computer with EBCDIC CODE this corresponds to the
specification

 CODE=4A:77 àE0:9E à5A:ADàC0:B9 à6A:DBàD0:EBàA1:DF

 For display devices with the German character set,
substitution codes must be used for the following TUSTEP
characters:

 [= ^< \ = ^/] = ^>
 { = ^(| = ^: } = ^)

Restrictions for the specification USER

The user name defined with this command is printed on the cover
sheet of printout whenever the cover sheet is generated by
TUSTEP. If the cover sheet is generated by the operating system,
this user name is not used for this purpose under the operating
systems MVS and VMS.

 - 87 -

Instructions for defining TUSTEP variables:

Instructions must contain two identical markers in the first two
columns. The default marker is the dollar sign ("$"). Besides
instructions for defining variables, instructions for comments
and messages as well as instructions for redefining markers are
also allowed here.

Names of TUSTEP variables must consist of 1 to 12 alphanumeric
characters and must begin with an alphabetic character.

There are three ways to define a variable and to assign it a
value, or a new value if it has already been defined.

With the instruction

$$: variable name = "character string"

the character string enclosed in quotation marks is assigned to
the TUSTEP variable having the specified name. The character
itself may not contain quotation marks.

When the following instruction is used in an interactive
session, a message will appear and a response will be expected:

$$? "message", variable name = "character string"

The response (no longer than one line) will be assigned to the
specified TUSTEP variable. If a null response is given or the
command #DEFINE is called in a batch job, the character
character string given in the instruction will be assigned to
the TUSTEP variable.

If more than one character string is to be assigned to a TUSTEP
variable, the following instruction can be used:

$$: variable name = *

The character strings following this instruction and preceding
the next instruction (=next line beginning with $$) will be
assigned to the TUSTEP variable having the specified name. In
this case each line represents one character string.

The instruction

$$- comment

can be used to insert comment lines between the definitions of
TUSTEP variables. The instruction

$$+ message

is used to list messages in the journal (i.e. the display device
in interactive mode).

If messages are to be listed in interactive mode only, the
following macro instruction can be used:

Basics - 88 - TUSTEP

$$* message

This can be used to display information about possible responses
and their effects before they are actually activated.

The default instruction-marker "$" located in the first two
columns of a line can be redefined with the following
instruction:

$$= *

After this instruction an asterisk is used as the
instruction-marker. Any other special character may be used
instead of an asterisk (used here as an example). After being
changed with this instruction, the marker can be reset to its
default value with the following instruction:

**= $

The use of a marker other than "$" may become necessary when
more than one character string is assigned to a TUSTEP variable
and one of these character strings begins with a $$.

 - 89 -

Instructions for defining function keys

The following description for defining default values for
function keys is valid only at the command level (after the
"Enter command" prompt). Function key settings in the Editor
(after the "Enter instruction" prompt) must be set individually
(see page 191).

Function keys can be used at the command level only if the
command #JOURNAL has been previously used to set the mode to
either PORTIONED or CONTINUOUS (see page 116).

For input at the command level, each of the 20 most recently
lines will be stored to buffer. Function keys can be used to
recall these lines to screen, where they may be reentered at the
command prompt

However, the function keys cannot be defined arbitrarily. At
present, only 4 different definitions are possible.

Fn=CUR_UP (default setting for F9)

defines function key n for scrolling backwards in the list of
lines contain in the buffer.

Fn=CUR_DN (default setting for F10)

defines function key n for scrolling forwards in the list of
lines contained in the buffer.

Fn=RESHOW (default setting for F4)

defines function key n for displaying a list of all lines saved
to the buffer.

Fn=CANCEL (default setting for F3)

defines function key n for supplying an end-of-file marker,
which is also used to interrupt a TUSTEP session.

Basics - 90 - TUSTEP

Analyzing files

DUMP

Command

#DUMP

Specifications
FILE = file Name of the file to analyzed.

Features

This command is used to analyze and alter the contents of files
(e.g. for determining the structure of a system file). However,
the contents of files should not be altered unless the exact
structure of each file is known. Specifications are to be
provided upon calling up this command. A list of specifications
possible can be shown on screen by entering a question mark.
This program is terminated by entering "*eof" in place of an
instruction.

 - 91 -

Editing data files

EDIT

Command:

#EDIT

Specifications:
FILE = file Name of the file whose data are to be

edited

= -STD- The standard EDITOR file is to be edited

MODE = T Record numbering in text mode

= P Record numbering in program mode

= -STD- Set mode automatically (see below)

DEFINITIONS= - * No new definitions; those last used
remain in effect unaltered

= file Name of the file containing the new
definitions for the Editor

= * New definitions for the Editor follow the
command #EDIT and are ended by *EOF.

WAIT = + When the Editors is started, confirmation
is required (by pressing the ENTER key)
before the clearing the screen.

= - * When the Editor is started, no
confirmation is required before clearing
the screen.

MACRO = name Name of the Editor macro that is
automatically carried out after starting
the Editor

= - * No automatic execution of macros after
starting the Editor.

Features:

This command is used to start the Editor. The Editor can be used
to enter and edit text as well as programs at the display
device.

If the editor is called up without giving any specification
values, the file last edited and the mode last used are
automatically assumed. When the editor is called up for the
first time with no specifications being given, the
Standard-EDITOR-file is edited in mode P.

Basics - 92 - TUSTEP

The MODE is automatically set according to the following
criteria:

- If the file has already been processed by the Editor and has
not been changed since then, the mode last used remains in
effect.

- If the records of the file are numbered in text mode (this is
assumed if the record number of the last record is greater
than 999999), MODE=T is set.

- If the first record starts with "#= ", and it às number is less
than 1000000, MODE T will be used.

- In all other cases, MODE P will be used.

Restrictions:

Because each record in the editor is referred to by its record
number, the record numbers in the file to be edited must be in
ascending order, with each record having a unique number.
Moreover, no record may exceed 600 characters.

Notes:

After the Editor has been started, Editor instructions are
entered at the prompt

Enter instruction >

to tell the Editor what it is to do. After typing in an
instruction, it is then sent to the computer by pressing the
ENTER key. Only then will it be interpreted and executed. Editor
instructions are described in detail in the chapter entitled
"Editor" (starting on page 174).

The data given in the specification DEFINITIONS are used to
define or preset tabulators, functions, character groups and
string groups, parameters, Editor macros as well as various
options (cf. chapter "Editor" pages 190, 191, 193, 202, 192,
211).

If a definition needs more than one line (i.e. more than 80
characters), it can be continued in the following line. These
continuation lines have to start with a blank, which is ignored
when the line is processed by other programs. Lines beginning
with a "C" are treated as comment lines, and are therefore
skipped over.

It is advisable to record permanently-used Editor settings in
the start file (see page 21) so that with each new TUSTEP
session the function keys, Editor macros, etc are automatically
defined to conform to the user às particular needs.

 - 93 -

 Erasing data/deleting files

 ERASE

Command:

#ERASE

Specifications:
DATA = file Name of the file containing the data to

be erased. More than one file name is
allowed.

= - * No data contained in a specific file are
to be erased

= + The data in the files selected with the
specifications PROJECT/CARRIER/POSITIVE/
NEGATIVE are to be erased.

FILE = file Name of the file which is to be deleted.
More than one file name is allowed.

= - * No file with a specific name is to be
deleted

= + Files selected with the specifications
PROJECT/CARRIER/POSITIVE/NEGATIVE are to
be deleted.

PROJECT = name Name of the project whose files are to be
deleted; name of the project to be
deleted.

If a project is to be deleted, no entries
are to be made for the specifications
DATA and FILE (i.e. besides using the
default setting: "-"); the carrier on
which the project to be deleted is
located must be given in the
specification CARRIER.

= + Files of the current project are to be
deleted.

= -STD- Files of the project set at
initialization are to be deleted.

= - * No file of any specific project is to be
deleted.

CARRIER = -STD- The files (or project) to be deleted are
(is) located on a data carrier specified
by the operating system. Under DOS, UNIX

 - 94 -

and VMS the carrier for permanent files
is set by the system variable TUSTEP_DSK.

= name Under DOS, UNIX and VMS: name of the
system variable containing the path
specification for the files (project) to
be deleted. Under DOS the letter of the
appropriate drive can be specified here
alone if the path specification contains
no directory names.

= - * No file of any specific carrier (disk or
disk drive) is to be deleted.

POSITIVE = * No positive selection of file names by
character strings

= ... Only those files are to be deleted whose
file names contain at least one of the
given character strings.

NEGATIVE = * No negative selection of file names by
character strings

= ... Only those files are to be deleted whose
file names do not contain any of the
given character strings.

WIPE = + The files to be deleted (or the data
contained therein) are to be overwritten.

= - The files to be deleted (or the data
contained therein) are not to be
overwritten.

Features:

This command is used to erase the data in files as well as files
themselves. If only a file às data are erased, the file the file
continues to exist as an empty file. After a file is deleted, it
no longer exists. In both cases, the files involved must be
opened for writing.

In addition, this command is used to delete projects
(directories). A project to be deleted may not contain any
files. If so, they must first be deleted or renamed (with the
command #RENAME 163) in such a way that they are entered under
another directory. Projects specified by the system (system
manager) may not be deleted.

To delete all files opened for writing in a particular project,
simply enter a "+" for the specification DATA or FILE and the
name of the project for the specification PROJECT. Likewise, all
files on a data carrier which are opened for writing can be
deleted by giving the name of the disk or disk drive for the
specification CARRIER. If both specifications are used, all
opened files of the given project which are located on the given
data carrier will be deleted.

TUSTEP - 95 - Basics

To erase data in all files or to delete all files whose file
name contains a particular character string, enter those
character strings in the specification POSITIVE which must occur
at least once in the file name for the file to be erased. The
specification NEGATIVE can be used to specify character strings
which must not occur in the file name for the file to be deleted
or the data contained to be erased. For a description of how to
define the character strings, refer to the command #LIST on page
121.

The specification WIPE can be used to specify whether the data
contained in the files are to be overwritten (data security!).
If no entry is made for this specification, the data will be
overwritten unless another mode has been set with the command
#WIPE (cf. page 173).

 - 96 -

Error stop toggle

 ERROR STOP

Command:

#ERROR STOP

Specifications:
MODE = ON Switch on error stop

= OFF Switch off error stop

Features:

With this command the error stop can be switched on and off. If
no entry is made for the specification MODE, the present mode of
the error stop will be displayed.

If a TUSTEP program is stopped due to errors (e.g. if the file
given in a command às specification does not exist, or if there
are errors in the parameters), there is no point in executing
the commands which follow.

If the error stop is switched off, the execution of commands
will continue even after an error occurs.

If the error stop is switched on when an error occurs, the
remaining commands will be canceled if in batch mode; in
interactive mode the user is given a choice of three
possibilities:

1) H (Hold) Before the remaining commands are carried out,
priority commands shall be executed. Priority commands are
subsequently entered one by one (!). If an empty input line
is sent to the computer (ENTER) instead of a priority
command, the interrupted command sequence will continue.

2) C (Cancel) Cancel remaining commands

3) G (Go) The remaining commands are to be executed.

When TUSTEP is initialized, the error stop is switched on
(active).

 - 97 -

Executing a sequence of commands

 EXECUTE

Command:

#EXECUTE

Specifications:
COMMAND = file Name of the file (program or segment

file) containing the command sequence to
be executed.

= -STD- The commands to be executed are recorded
in the standard EDITOR file.

= * The commands to be executed follow the
command #EXECUTE and are ended by *EOF.
In this case, only the value "-" is
allowed for the specification RANGE.

RANGE = - * Executes the entire command sequence
given in the specification COMMAND.

= pos Executes only the command sequence
starting at record position pos in the
program file given in the specification
COMMAND.

= pos1-pos2 Executes only the command sequence
located between record position pos1 to
record position pos2 (inclusive) in the
program file given in the COMMAND
specification.

= name Executes only the command sequence
contained in the segment name given here
and whose segment file has been given in
the specification COMMAND

= name-pos Execute only the command sequence
contained in the segment name specified
here starting with the record-position
pos.

= name-pos1-pos2 Execute only the command sequence
contained in the segment name specified
here from record position pos1 to record
position pos2 (inclusively).

PARAMETER = - * No parameters

= param Parameters to be inserted into the
command sequence at the correspondingly
marked positions.

Basics - 98 - TUSTEP

LOOP = n Execute command sequence n times; the
values 1, 2, 3, ... to n will be assigned
to the loop counter, which is inserted
into the command sequence at the
correspondingly marked positions.

= n-m Execute command sequence m-n+1 times,
with the values n to m being assigned to
the the loop counter. If n is zero, the
first pass (where the loop counter has a
value of 0) will insert an empty
character string instead of a 0 at the
correspondingly marked positions.

= 0-0 * The command sequence is executed one
time, with an empty string being inserted
at the correspondingly marked positions
for the loop counter.

= file The command sequence is executed for each
record of the given file, with the
contents of the record (instead of the
loop counter) being inserted at the
correspondingly marked positions.

MARKER = - The command sequence contained no marked
positions where parameters or loop
counters are to be inserted.

= x The character specified here has been
used to mark positions in the command
sequence where parameters or loop
counters are to be inserted.

= ? * The character "?" has been used as the
marker.

LISTING = - * No additional protocol of the command
sequence.

= + The command sequence is to be written to
the journal (i.e. in interactive mode,
the screen) after the parameters and the
loop counters have been inserted.

= file Name of the file to which a protocol of
the command sequence is to be written.

EXECUTION = + * Execute command sequence

= - Do not execute command sequence executed
(This can be specified if, for example,
the command sequence is only to be listed
in a test run).

= * Execute command sequence in batch mode.
The two sequences of operating system
instructions required before and after
the TUSTEP command will be entered after

 - 99 -

the #EXECUTE command, with each sequence
ending with *EOF.

SUPPLEMENT = ... Name of a system variable containing
supplementary specifications for the
operating system for starting the command
sequence in batch mode (cf. system
variable TUSTEP_SUB page 43). Check with
the respective computing center or system
administrator for which specifications
are recommended or necessary in each
case.

Feaatures:

With this command, a TUSTEP command sequence (normally located
in a file) can be executed once or repeatedly. It is possible to
modify the commands with parameters and/or a running number
(= loop counter).

If only a certain part of a command sequence is to be executed,
the specification RANGE can be used to select this part. A
description of how to select specific parts of a command
sequence is provided above, where "pos" stands for a record
number whose numbering method corresponds to that used in
program mode (cf. page 24). "name" stands for the name of a
segment in a segment file.

For the specification PARAMETER, up to 9 parameters can be
given, each separated by an apostrophe. The 1st parameter will
be inserted into the command sequence at all locations marked
with "?1" (where "?" is the marker); the 2nd, 3rd etc.
parameters will be inserted at locations marked with "?2", "?3"
etc. If fewer parameters are given for the specification
PARAMETER than provided for in the command sequence, an empty
string will be inserted for the missing parameters.

If the command sequence is to be repeated with other parameters,
these sets of (1 to 9) parameters can be given one after the
other and separated from the preceding parameter set by a
semicolon. If a set of parameters contains fewer parameters than
are provided for in the repeated command sequence, the same
sequence of characters used in the previous set will be inserted
for the missing parameters. The same is true if an empty string
(i.e. a final apostrophe only) is given as a parameter. The
parameters given in each parameter set thus become the default
values for the subsequent set of parameters.

Commands can also be modified with a running number. It
corresponds to the value of the loop counter and is inserted
into the command sequence at locations marked with "?0" (where
"?" is the marker). The command sequence is executed for each
value in the loop counter. The values to be assigned to the loop
counter can be given in the specification LOOP. If the command
sequence is also to be repeated based on the values given in the
specification PARAMETER, then each of these repetitions will
executed with the frequency given in the specification LOOP.

Basics - 100 - TUSTEP

Instead of using a loop counter, a character string can also be
inserted at positions marked with "?0" (where "?" is the
marker). These character strings must be located in the file
given in the specification LOOP, where each record of this file
contains one character string. Leading and trailing blanks will
be ignored. The command sequence will be executed for every
character string. If the command sequence is to be additionally
repeated due to PARAMETER specifications, each of these
repetitions will be executed with every record of the file given
in the specification LOOP.

For the specification MARKER, any character except "#", "=",
" à", "," and " " can be used to mark locations in the command
sequence where parameters or loop counters are to be inserted.
However, the specified character will effectively mark such a
location in the command sequence only if it is directly followed
by a digit. This ensures that the marker and the digit will be
replaced in any case (if necessary, by an empty string), even if
no value has been given in the specifications PARAMETER and/or
LOOP. If a marker is not followed by a digit in the command
sequence, the character used as a marker remains unchanged.

Note:

If, for example, a command sequence is to be executed for all
files whose names contain (or do not contain) a certain
character string, these file names can be written to file with
the command #LIST (cf. page 121). This file can be given for the
specification LOOP after making any necessary corrections in
this list with the Editor.

If a command sequence is to be executed in batch mode, the
related operating system instructions must be given for the
specfication EXECUTION. To simplify this procedure, a standard
macro called #*EXECUTE can be used, which automatically supplies
the necessary operating system instructions and executes the
commands in batch mode. This macro has the same specifications
as the command #EXECUTE. The specification SUPLEMENT may also
have to be specified as a system variable.

Restriction

Batch operations are not permitted under DOS.

TUSTEP - 101 - Basics

Formating texts (auto. layout)

 FORMAT

Command:

#FORMAT

Specifications:
SOURCE = file Name of the file containing the data

(with formating instructions) to be
formated

= -STD- The standard TEXT file contains the data
(with formating instructions) to be
formated.

DESTINATION= - * Output to the LISTING only

= file Name of the file to which the data (with
formating instructions) are to be written
observing the new page-line division.

= -STD- The formated data (with formating
instructions) are to be written to the
standard TEXT file observing the new
page-line division.

MODE = Type of printer for which the data are to
be prepared. The types of printers
available depends on the computer being
used. To obtain a list of these, use the
command #LIST,PRINTERS (cf. page 121)

The printer can also be specified with
parameters.

ERASE = - * If the DESTINATION file or the LISTING
already contains data, their data are to
be retained.

= + If the DESTINATION file or the LISTING
already contains data, their data are to
be erased beforehand.

PARAMETERS = - * No parameters

= file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

PREFIX = - * No user-defined default settings

 - 102 -

= file Name of the file containing formating
instructions for user-defined default
settings.

= * The formating instructions for
user-defined default values follow the
command and are ended by *EOF.

LISTING = -STD- * The formated data are to be written into
the standard LISTING.

= file Name of the file into which the formatted
data are to be written

= - No output of formated data to the LISTING

Features:

With this command texts can be prepared for printing. The text
is automatically laid out into lines and pages (including
hyphenation, line justification and setting footnotes). The
layout can be controlled by instructions which are included in
the text.

Notes:

Data in the SOURCE file are never altered. The results of this
program (data prepared for printing) are written to the LISTING.
file. This can be subsequently printed (sent to a printer) with
the command #PRINT (see page 160).

The data are written to the DESTINATION file as they are found
in the SOURCE file (except for character strings which are
replaced using the corresponding parameters). The line division
and the page-line numbers, however, will be adjusted to the
formated result.

The DESTINATION file may thus serve as a basis for further
corrections and has the advantage over the SOURCE file in that
the page numbering of the printed result corresponds to the page
and line numbering as used in the Editor for finding the places
where the text must be corrected.

If an index is to be compiled from the formatted text, it must
be based on the data as formatted in the DESTINATION file to
ensure that the page numbers appearing in the index reflect the
current layout of the document.

Description

For this command, there is a special description with the name
FO (cf. #MANUAL on page 128).

TUSTEP - 103 - Basics

Generating forms for printing

 GFORMS

Command:

#GFORMS

Specifications:
SOURCE = file Name of the file containing the data from

which forms are to be generated.

= -STD- The standard TEXT file contains the data
from which forms are to be generated.

MODE = - * The sequence of data in the LISTING shall
correspond to that of the input file.

= -STD- The input data are to be sorted in such a
way that the forms can be sorted in
stacks after being cut.

ERASE = - * If the LISTING already contains data,
they are to be retained.

= + If the LISTING already contains data,
they are to be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

FORM = - * No form to be used as a mask

= file Name of the file containing a form to be
used as a mask

LISTING = -STD- * The generated forms are to be written to
the standard LISTING.

= file Name of the file to which the generated
forms are to be written.

Features:

This command can be used to prepare data for printing in a
preset format (e.g. address labels, office forms, catalogue
cards). The user may specify:

- the size of the form

- standard text to appear on each form (which can also vary
depending on the occurrence of specific text parts in each
form).

 - 104 -

- the line and character positions for individual text parts

- which text parts are to be repeated on continuation forms if
there is not enough space for the text on a single form.

Description

For this command, there is a special description with the name
GF (cf. #MANUAL on page 128).

TUSTEP - 105 - Basics

Generating an index after sorting

 GINDEX

Command:

#GINDEX

Specifications:
SOURCE = file Name of the file containing the index

entries to be edited or containing the
entries for the KWIC index.

= -STD- The standard TEXT file contains the index
entries to be edited or the entries for
the KWIC index.

DESTINATION= - * Output to the LISTING only

= file Name of the file to which the generated
index is to be written

= -STD- The generated index is to be written to
the standard TEXT file.

MODE = + * Generate index; the input data contain a
reference field

= - Generate index; the input data do not
contain a reference field

= KWIC Generate KWIC index

ERASE = - * If the DESTINATION file or the LISTING
already contains data, the data are to be
retained.

= + If the DESTINATION file or the LISTING
already contains data, the data are to be
erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

DATA = - * SOURCE file contains the index entries in
their entirety.

= file Name of the file containing that part of
each index entry or of each KWIC index
entry which was not required for sorting

= -STD- The standard DATA file contains that part
of each index entry or of each KWIC index
entry which was not required for sorting.

 - 106 -

LISTING = -STD- * The formated index is to be written to
the standard LISTING

! = file Name of the file to which the formated
index is to be written.

= - No output of the formated index

Features:

With this command, index entries and text units can be condensed
and combined into an index (e.g. an index of word forms or a
KWIC index, or a special list (e.g. bibliographies). The SOURCE
file contains the index entries or text units which have been
generated and prepared for sorting with PINDEX or PRESORT and
have then been sorted with SORT. Other data can be processed
also, provided each input record contains a text unit.

With this program it is possible

- to add control characters and markers
- to choose any format for the print output
- to generate titles and running heads
- to select index entries and text units
- to structure index entries hierarchically into entries and

subentries
- to calculate absolute and relative frequencies

Notes:

For printing the generated index or the directory with the
command #PRINT, the LISTING file must be used, not the
DESTINATION file. The DESTINATION file is used for further
processing of the index or list (e.g. for photo composition); in
this case, this program cannot generate a LISTING
simultaneously.

Description

For this command, there is a special description with the name
GI (cf. #MANUAL on page 128).

TUSTEP - 107 - Basics

Generating a listing of a text file

 GLISTING

Command:

#GLISTING

Specifications:
SOURCE = file Name of the file containing the data to

be listed (i.e. of which a protocol is to
be generated), or (for MODE=A and MODE=U)
name of the file containing the protocol
from which specific parts are to be
copied.

= -STD- The standard TEXT file contains the data
from which a protocol is to be prepared,
or contains the protocol from which parts
are to be copied.

MODE = T Insert page-line number in front of each
record (for data numbered in text mode).

= -STD- Begin a new page when the page number of
the record changes; insert the line
number in front of each record.

= S Begin a new page when the page number of
the record changes; records appear with
no page-line numbers.

= O Ignore record numbers

= P Insert line number in front of each
record (for data numbered in program
mode, and for segment files).

= A The SOURCE file is a listing file; page
selection based on the page number in the
record number.

= U The SOURCE file is a listing file; page
selection based on the page number in the
header line.

= ... Type of printer for which the data are to
be prepared. The type of printer
available depends on the computer being
used. For a list of these, use the
command #LIST,PRINTERS (siehe Seite 121).

The printer type can also be specifed in
parameters.

Basics - 108 - TUSTEP

ERASE = - * If the LISTING already contains data,
they are to be retained.

= + If the LISTING already contains data,
they are to be erased beforehand.

PPARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

LISTING = -STD- * The generated listing is to be written
into the standard LISTING.

= + Listing should be outputed to the journal
(i.e. written to screen)

= file Name of the file into which the generated
listing is to be written

Features:

With this command a listing of a file can be generated, i.e. a
list file of its data can be prepared for subsequent printing.
Control characters contained in the data are not interpreted but
treated as printable characters. To determine the format of the
listing, parameters can be used to specify the number of
columns, headers for pages and columns, type of numbering and
line spacing.

Furthermore, specific pages of a listing file given in the
specification SOURCE can be selected and copied to the file
given in the specification LISTING.

Note

Data in the SOURCE file always remain in their original form.
The results of the program (the data listing prepared for
printing) are written to the LISTING file. This file can then be
sent to a printer with the command #PRINT (see page 160).

Description:

For this command, there is a special description with the name
GL (cf. #MANUAL on page 128).

TUSTEP - 109 - Basics

Online help

HELP

Command

#HELP

Specifications none

Features

This program can be used interactively for displaying TUSTEP
help texts on screen. Texts are selected by choosing the desired
topic from a hierarchical table of contents. After the online
help command is given, a menu will appear with the main help
topics. If one of these topics is selected, a new window will be
opened which displays either a submenu and its topics or the
help text of the selected topic. Control codes (described below)
are used to select topics and to scroll through the help text.

Control codes

As a quick reference aid, each control code has a short form by
which it is listed in the tables on pages 230 to 239. These
tables show which key or key combination must be pressed to
carry out each control code for the most common computer
keyboards.

CUR_DN Cursor down

Moves the cursor down one line. If the cursor is
already in the last line of the active window and
if pertinent data are located after this line, the
contents of the window will be moved up one line in
order to display the following line.

CUR_UP Cursor up

Moves the cursor up one line. If the cursor is
already in the first line of the active window and
if pertinent data are located before this line, the
contents of the window will be moved down one line
in order to display the preceding line.

CUR_RI Cursor right: "Select"

In a menu, this key displays the submenu or related
text located in the same line as the cursor.

Basics - 110 - TUSTEP

CUR_LE Cursor left: "Return"

In the main menu, this key exits the online help
program; in submenus and in help texts this key
will display the next higher menu.

ENTER Enter: "Select"

Same as CUR_RI

DEL Delete: "Return"

Same as CUR_LE

SHW_DN "Show next screen of data"

Scrolls forward in the current menu or help text
(i.e. toward the end of the text).

SHW_UP "Show preceding screen of data"

Scrolls backwards in the current menu or help text
(i.e. toward the start of text).

SKP_BEG "Skip to start of data"

Jumps to the beginning of the current menu or help
text.

SKP_END "Skip to end of data"

Jumps to the end of the current menu or help text.

REFRESH "Refresh screen"

Restores screen display disrupted by system
messages, line interference, etc.

CANCEL "Terminate"

Exits the online help program.

Note

Online help can also be called up from the Editor with the
instruction HELP or the control command HELP.

TUSTEP - 111 - Basics

Information about macro files, variables, etc.

 INFORM

Command:

#INFORM

Specifications:
MACROS = $name The description of the user macro having

the name specified here and contained in
the current macro file is to be listed in
the journal (i.e. in interactive mode,
the screen). More than one name is
allowed.

= *name The description of the standard macro
having the name specified here is to be
listed in the journal (i.e. in
interactive mode, the screen).

= name The description of the user macro having
the name specified here, or - if there is
no user macro with this name - the
description of the standard macro - is to
be listed in the journal (i.e. in
interactive mode, the screen). More than
one name is allowed.

= + The name of the current macro file and a
list of the macros contained therein is
to be listed in the journal (i.e. in
interactive mode, the screen).

= -STD- The names of the available standard
macros are to be listed in the journal
(i.e. in interactive mode, the screen).

= - * No listing of information about the
current macro file, user-defined macros
or standard macros

VARIABLES = name The definition of the variable having the
name specified here is to be listed in
the journal (i.e. in interactive mode,
the screen). More than one name is
allowed.

= + The definitions of all defined TUSTEP
variables are to be listed in the journal
(i.e. in interactive mode, the screen).

= - * No listing of information concerning
variables

 - 112 -

PROJECT = + The current project name is to be listed
in the journal (i.e. in interactive mode,
the screen).

= - * No listing of current project name

USER = + The current user name is to be listed to
the journal (i.e. in interactive mode,
the screen).

= - * No listing of the current user name

CODE = + The current code table for the display
device is to be listed in the journal
(i.e. in interactive mode, the screen).

= - * No listing of current code table

FUNCTIONS = name The definitions of all defined function
keys are to be listed in the journal (in
interactive mode, the screen)

= - * No listing of information concerning
function keys

Features:

With this command the following information can be listed:

- descriptions of user macros from the current macro file

- descriptions of standard macros

- name of the current macro file and the names of the macros it
contains

- names of standard macros

- contents of specified TUSTEP variables

- names of all defined TUSTEP variables and their values

- current project name used to complete the file names. This
project name is used if in a TUSTEP command a file name does
not explicitly contain a project name.

- current user name to be used on the cover sheet of print
output

- current code table being used for input and output at the
display device

- defining function keys at the command level.

If this command is given without any specifications, TUSTEP user
information will be listed if available.

TUSTEP - 113 - Basics

Notes:

The current macro file is the file most recently defined as such
with the command #DEFINE (cf. page 83).

The description of a macro consists of the comment lines ("$$-"
in column 1 to 3), located immediately at the beginning of a
macro in the macro file.

TUSTEP variables can be defined with the command #DEFINE (see
page 83) or in macros (see macro instruction DEFINE on page
272); their values can be used in commands and in macros. This
command provides no information about variables defined within
macros.

The project name and the user name can be redefined with the
command #DEFINE (cf. page 83). This command can also be used to
set the code table and define function keys.

Basics - 114 - TUSTEP

Inserting text parts

 INSERT

Command:

#INSERT

Specifications:
SOURCE = file Name of the file containing the data

where text parts are to be inserted

= -STD- The data where text parts are to be
inserted are located in the standard TEXT
file.

DESTINATION= file Name of the file to which the data with
the inserted text parts are to be written

= -STD- The data with the inserted text parts are
to be written to the standard TEXT file.

MODE = -STD- * Unique short form, normal case

= SHORT Unique short form, short text part to be
inserted

= LONG Unique short form, long text part to be
inserted

= PARALLEL Short forms are located in the SHORT file
and in the SOURCE file in parallel
fashion.

= SORTED Short forms are sorted alphabetically.

= MORE The SHORT file contains more short forms
than the SOURCE file.

= LESS The SHORT file contains less short forms
than the SOURCE file.

= GROUPS The SHORT file contains groups, each
having the same short forms. The SOURCE
file is to be copied for each group.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

PARAMETERS = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

 - 115 -

SHORT = file Name of the file containing the text
parts to be inserted

Features:

With this program, text parts which are located in a file and
are indentifiable by a short form (e.g. a running number) can be
inserted (merged) into the data of another file. Each text part
is inserted at the position in the data where its corresponding
short form (abbreviation for the text part) is located.

Practical examples (the type of data located in the SHORT file
is shown in parentheses):

- Merge footnotes with the text (footnotes)

- Replace short forms with the full text (full text)

- Compile form letters (form mask)

- Create series letters (one address per group)

Description

For this command there is a special description with the name IS
(cf. #MANUAL page 128).

 - 116 -

Activating/deactivating journal file

 JOURNAL

Command:

#JOURNAL

Specifications:
MODE = ON Activate journal file

= OFF Deactivate journal file

= NEW_PAGE Start a new page in journal file, if
activated.

= SHOW Deactivate journal file and write it to
the journal (i.e. in interactive mode,
the screen).

= EDIT Deactivate journal file and start Editor
for editing journal file.

= COPY Deactivate journal file and copy it to
the file given in the specification FILE.

= ERASE Erase journal file.

= PRINT Deactivate journal file and send it to
the printer given in the specification
DEVICE.

= - Suppress output of journal file

= + Do not suppress output of journal file

= CONTINUOUS Uninterrupted journal output to screen

= PORTIONED Portioned journal output to screen, next
screen portion not displayed until ENTER
key is pressed.

= SYSTEM Journal output to screen in the
conventional manner used by the
respective operating system.

TYPE = ... Type of printer to be used. The type of
printer available depends on the actual
computer being used. To obtain a list of
these, use the command #LIST, PRINTERS
(see page 121).

DEVICE = ... If MODE=PRINT, name of the printer used.
The names of the available printers may
be obtained from the information bulletin
of the respective computing center.

TUSTEP - 117 - Basics

COPIES = 1 * If MODE=PRINT, the journal file is to be
printed once.

= n If MODE=PRINT, the journal file is to be
printed n times.

PREFIX = - * No prefix

= * The prefix follows the command #JOURNAL
and is ended by *EOF.

= file Name of the file containing the prefix

PAGES = - * The journal file is to be printed in its
entirety.

= n / n-m Print only page n / pages n-m. More than
one page or range of pages may be
specified here.

COVER = -STD- * Whether TUSTEP supplies a cover for the
printed output (cover and end sheets with
names) depends on the computer and
printer being used.

= - No cover to be supplied by TUSTEP. This
specification will be ignored if the
computing center does not allow this for
certain printers.

= + TUSTEP is to supply a cover for the
printed output.

FILE = - * Normal case

= file If MODE=COPY, name of the TUSTEP file to
which the journal file is to be copied.
If MODE=PRINT, name of the system file to
which the printer control codes are to be
written. More than one file name may be
specified.

ERASE = - * If the file given in the specification
FILE already contains data, they are to
be retained.

= + If the file given in the specification
FILE already contains data, they are to
be erased beforehand.

OPTIONS = ... * Specifications for modifying the
generated printer control codes.

SUPPLEMENT = ... Name of the system file that contains
supplementary specifications for the
operating system (cf. system variable
TUSTEP_LPR page 42). The appropriate
specifications may be obtained from the

Basics - 118 - TUSTEP

information bulletin or system manager of
the respective comptuting center.

PORTION = -STD- The printout should be subdivided into
portions of 500 pages each (for line
printers), or portions of 200 pages each
(for dot matrix and laser printers).

= n The printout should be divided into
portions of n pages each.

Features:

This command can be used to log TUSTEP messages and print output
(in addition to the journal (i.e. in interactive mode, the
screen) into a journal file.

When the journal file is active, the output generated by giving
the value "+" for the specification LISTING of TUSTEP commands
(LISTING =+) as well as the list of parameters will be written
into the journal file only. The start and end messages as well
as any error messages will be written into both the journal and
the journal file.

When TUSTEP is initialized, the journal file is deactivated.

If the command is called up with no specifications, only the
current mode of the journal file will be displayed (i.e. whether
the journal file is active or not).

With this command, the journal file can be
- displayed on screen,
- processed with the Editor,
- copied to a file,
- erased,
- printed.

If only certain "pages" are to be printed, they can be selected
with the specification PAGES. Pages are selected based on the
record numbers in the journal file irrespective of the actual
printed page number. Page selection should generally not be done
until the journal file has been viewed in the Editor, where the
file às page organization can be ascertained.

If the journal file is to be printed out on a remote printer,
(e.g. one connected to another PC), a permanent system file
(TYP=SDF) can be entered for the specification FILE. The printer
control codes for the specified printer will then be written to
this file. The appropriate operating system command can then be
used to send this system file to the desired printer (e.g. the
DOS PRINT command). If more than one file has been given in the
specification FILE, only the number of pages given in the
specification PORTION will be written to each file. Output will
then proceed to the next file.

 - 119 -

For printing on EPSON compatible matrix printers, the following
options can be specified:

BD bidirectional printing
UD unidirectional printing (default)

H11 page length 11"
H12 page length 12"

LQ letter quality printing (default)
DRAFT draft quality printing

When executing "debugged" command sequences, is may be advisable
to reduce journal recording to a minimum. By setting the mode to
"-", the journal will record only comments beginning with "#+",
error messages and any messages that are part of an input
prompt. This mode can be cancelled by setting the mode back to
"+". If this mode has not been cancelled at the end of a command
sequence in interactive mode, it will be automatically cancelled
so that the journal is able to record newly entered commands in
normal fashion.

In interactive mode, this command can also be used to set the
type of screen display and keyboard input:

MODE = SYSTEM

Output and input conform to the usual method common to the
operating system being used. The function keys and control
commands are not (or only partially) available for input,
correction and repetition of commands at the command line. This
is the mode set after TUSTEP is initialized.

MODE = CONTINUOUS

Output proceeds uninterrupted until the next input prompt.
Function keys and control commands may be used to input, correct
and repeat commands at the command line. (cf. page 57).

MODE = PORTIONED

Corresponds to MODE = CONTINUOUS, except that output pauses,
when the screen is filled (usually after 22 lines of output).
Upon confirmation, the next screen portion of the journal will
then be outputted. The size of the next portion can be specified
by entering the number of desired lines.

After initialization of TUSTEP, output and input operations
proceed in the manner common to the operating system being used
(i.e. as in MODE=SYSTEM).

Note:

If the journal file is printed with MODE=PRINT, it will not be
erased at the same time. This must be done with the
specification MODE=ERASE.

Basics - 120 - TUSTEP

Restrictions in DEVICE specifications

Under DOS, only the "+" specification for DEVICE has any effect;
all other specifications do not. Output is directed to the
printer previously set with the DOS PRINT command (i.e. at the
operating system level) assuming no file has been given in the
FILE specification.

TUSTEP - 121 - Basics

Listing file names etc.

LIST

Command:

#LIST

Specifications:
MODE = -STD- * If no file name has been given for the

specification FILE, all files currently
opened will be listed. Otherwise, the
beginning and end of the specified file
will be listed.

= n Lists the first n records of the file
given in the specification FILE.

= n;m Lists the first n and the last m records
of the file given in the specification
FILE.

= PRINTERS Lists all printers supported by the
TUSTEP version being used.

= FILENAMES Lists the names of all existing files
(whether opened or not) of a project. In
case a file name has been given in the
specification FILE, the list of file
names will be written to this file.

= PROJECTNAMES Lists the names of all existing projects
of a data carrier. In case a file has
been given in the specification FILE, the
list of project names will be written to
this file.

FILE = - * Normal case

= name If MODE=-STD-, "n" or "n;m": name of the
file whose beginning and end are to be
listed. If MODE=FILENAMES or PRINTERS:
name of the file to which the file names
are to be written.

ERASE = - * If the file given for the specification
FILE already contains data, they are to
be retained.

= + If the file given for the specification
FILE already contains data (and when
MODE=FILENAMES or PRINTERS), they are to
be erased beforehand.

PROJECT = name If MODE=FILENAMES: lists the names of all
files in this project.

 - 122 -

= + * If MODE=FILENAMES, the names of all files
in the current project are to be listed.

= -STD- If MODE=FILENAMES: lists the names of all
files in the project set at
initialization.

CARRIER = -STD- * The files whose names are to be listed
are located on a data carrier (disk or
disk drive) set by the operating system.
Under DOS, UNIX and VMS: the carrier for
permanent files is set by the system
variable TUSTEP_DSK.

= name Under DOS, UNIX and VMS: name of the
system variable containing the path
specification for the files or project
whose names are to be listed. Under DOS,
the drive letter alone can be specified
here if the path specification contains
no directory names.

POSITIVE = * Normal case

= ... If MODE=FILENAMES or MODE=PROJECTNAMES,
only those file names are to be listed
which contain at least one of the
specified character strings.

NEGATIVE = * Normal case

= ... If MODES=FILENAMES or MODE=PROJECTNAMES,
file names or project names containing
one of the specified character strings
are not to be listed.

VERSION = -STD- * Normal case

= +n Under VMS: If MODE=FILENAMES, only file
names having the n largest version number
are to be listed.

= -n Under VMS: If MODE=FILENAMES, file names
having the n largest version number are
not to be listed.

REPLACE = - * Normal case

= ... If MODE=FILENAMES or MODE=PROJECTNAMES
the specified replacements should be made
in the list of file names or project
names before it is written to the file
given in the FILE specification.

Features:

With this command, the following information can be listed. If
not specified otherwise, it will be listed into the journal
(i.e. in interactive mode, the screen). Only those

TUSTEP - 123 - Basics

specifications relevant to the desired action will be described
in the following.

Names of all opened files

 #LIST

 Opened files also include files that have been created but
not yet closed or erased. In addition to the file names, the
following information will also be listed for TUSTEP files:

 - file type
 - whether the file has been opened for reading READ (R) or

writing WRITE (W); a scratch file can be recognized as such
in that neither (R) nor (W) appears.

 - average record length
 - number of records in the file
 - file size in KB
 - Percent of file occupied by data
 - Name of the data carrier (for system variables)

Names of all existing files

 #LIST, FILENAMES, PROJECT=..., CARRIER=...,
 POSITIVE=..., NEGATIVE=...

 This lists all files which have been created under the
specified project on the specified carrier and which have a
TUSTEP-compatible name.

 To produce a list of only those file names which contain (or
do not contain) certain character strings, these character
strings can be entered in the specification POSITIVE (or
NEGATIVE): for a file name to be listed, at least one of the
character strings given in the specification POSITIVE must
occur in its name. Conversely, character strings given in the
specification NEGATIVE can be used to exclude file names from
the list which contain one of the specified character
strings. For a description of how to define character strings
when selecting file names, see below.

Names of all available projects

 #LIST, PROJECTNAMES, CARRIER=...,
 POSITIVE=..., NEGATIVE=...

 This produces a list of all projects located on the specified
carrier which have a TUSTEP compatible name.

 To produce a list of only those projects which contain (or do
not contain) certain character strings, these character
strings can be entered for the specification POSITIVE (or
NEGATIVE); for a project name to be listed, at least one of
the character strings given in the specification POSITIVE
must occur in its name. Conversely, character strings given
in the specification NEGATIVE can be used to exclude project
names from the list which contain one of the specified

 - 124 -

character strings. For a description of how to define
character strings when selecting project names, see below.

Beginning and end of a TUSTEP file

 #LIST, FILE=..., CARRIER=...

 The file given for the specification FILE must be a TUSTEP
file. The first 5 records and the last 3 records of this file
will be listed.

 If the file with the specified name on the specified carrier
has not been opened, it will be automatically opened and then
immediately closed.

Supported printers

 #LIST, PRINTERS

 This will list all printers supported by the TUSTEP version
being used. The types of printers supported depends on the
version and computer being used.

 The printer used for printing must be specified in the
parameter GER when data are prepared for printing and also in
the specification TYPE when printing with the command #PRINT.

Notes:

If, for example, a command sequence is to be executed for all
files whose names contain (or do not contain) a certain
character string, the command #LIST can be used to select and
then write these file names to a file. After making any
necessary corrections to the list with the Editor, this file can
be given for the specification LOOP in the command #EXECUTE (see
page 97).

The command #INFORM (cf. page 111) can also be used to list
additional information concerning macro files, variables, etc.

Character selection strings for file names

The specifications POSITIVE and NEGATIVE can be given character
strings which must either occur or not occur in file names, and,
if necessary, character strings (character exception strings),
which are to be ignored when this check is carried out. If
character strings of different lengths have been given in a
specification, the one having the longer length is given
precedence. For character strings of equal length, the order of
priority corresponds to the order they were given in the
specification. Character strings must be separated from each
other by a delimiter character of the user às choice. Due to
syntactical reasons, however, the characters "#", "=", " à" and
"," may not be used as delimiters. The delimiter is the first
character given in the specification. A double delimiter is used
to separate character strings to be searched from those which

TUSTEP - 125 - Basics

are to be ignored during the search. The last character given in
the specification must again be the delimiter.

In a character string, one of the character combinations listed
below may be given instead of a single character. They are used
to represent a group of characters.
 >/ all digits in the 7-bit and 8-bit TUSTEP character sets
 </ all letters in the 7-bit and 8-bit TUSTEP character sets
 >% all characters in the 7-bit TUSTEP character set
 <% all characters of the 7-bit and 8-bit TUSTEP character

set

A frequency condition given in a character string applies to the
character which directly follows it:

 ><n character must occur at least n times
 <>n character may occur up to n times
 ><0 character may be absent
 <>0 character may occur any number of times

Here any single-digit number from 1 to 9 may be given for "n".
For "><0" and "<>0", the zero may be omitted if no digit
follows. Thus, "<>0>/" has the same effect as "<>>/" and stands
for "any number of digits". The frequency conditions "><n" and
"><0" may be combined with "<>n" and "<>0". For example,
"x><<>yz" means that between x and z the y may be absent, or
that any number of y às may be located between x and z.

If the given character string is to match the beginning of a
file name, "><x" must be added to the beginning of the character
string, where "x" stands for the selected delimiter. Likewise,
"<>x" must be added to the end of a character string if the
given character string is to match the end of the file name.
Thus, "/></TXT/" stands for all file names which start with TXT,
and "/TXT<>//" for all file names which end with TXT (here / is
the delimiter; the character " is not included in the
specification).

In addition, pointers and surrounding conditions may also be
specified. For a more detailed description of various character
strings definitions used in the specifications POSITIVE and
NEGATIVE please refer to the chapter entitled "Parameters" (page
241 ff.); These specifications correspond to the character
search string table described for parameter type IX.

Character replacement strings for file names

The specification REPLACE is used to specify a pair of character
strings, where the the first character string is the search
string, which is to be replaced by the pair às second character
string, the replacement string. In addition, the user can also
specify character search strings which are not to be replaced
(exception strings).

Character search strings are treated in the same manner as
described above for "Character selection strings for file
names".

Basics - 126 - TUSTEP

The character search and replacement strings may be of any
length. However, they must be separated from each other by a
delimiter character, which can be any character chosen by the
user. Due to syntactical reasons, however, the characters "#",
"=", " à" and "," may not be used as delimiters. The delimiter is
always the first (and last) character given in the
specification. To switch from character string pairs to
exception strings, the delimiter is written where a search
string would normally be expected (i.e. a double delimiter).
Please note once more that the last character of the
specification must be the delimiter character.

Character replacement strings can also contain pointers to the
related search string. For a more detailed description of the
various character strings definitions used in the specification
REPLACE, please refer to the chapter entitled "Parameters" (page
241 ff.). These specifications correspond to the character
string replacement table described under parameter type X.

TUSTEP - 127 - Basics

Creating command sequences

 MACRO

Command:

#MAKRO

Specifications:
SOURCE = file Name of the file containing macro

instructions and commands

= * * The macro instructions and commands
follow the command #MACRO and are ended
by *EOF.

LISTING = - * No additional listing of the generated
command sequence

= + The generated command sequence is to be
written to the journal (i.e. in
interactive mode, the screen).

= file Name of the file to which the generated
command sequence is to be written.

EXECUTION = + * The generated command sequence is to be
executed.

= - The created command sequence is not to be
executed.

Features:

With this command, a command sequence can be created and
executed in the form of a macro. In this case, however,
specification values cannot be further conveyed; the macro
instruction $$! is therefore not allowed. This command also
permits user interaction during the execution of a command
sequence without having to execute a command macro. Examples
pertaining to the use of this command are given at the end of
the chapter entitled "Macros" (page 290).

 - 128 -

Printing descriptions

 MANUAL

Command:

#MANUAL

Specifications:
NAME = name Name of the description to be listed.

More than one name is allowed.

TYPE = Printer to be used. The type of available
printers depends on the actual computer
being used. To obtain a list of these,
use the command #LIST, PRINTERS (cf. page
121).

DEVICE = ... Name of the printer for printing
descriptions. A list of available
printers may be obtained from the
information bulletin or system manager of
the respective computing center.

= + Description to be sent to the journal
(i.e. in interactive mode, the screen).

COPIES = 1 * 1 copy of the description is to be
printed.

= n n copies of the description are to be
printed.

PREFIX = - * No prefix

= * The prefix follows the command #PRINT and
is ended by *EOF.

= file Name of the file containing the prefix.

PAGES = - * The entire description is to be printed.

= n / n-m Print only page n / pages n to m. More
than one page or range specification
possible.

COVER = -STD- * Whether TUSTEP supplies a cover for
printed output (cover and end sheets)
depends on the computer and printer being
used.

= - No cover to be supplied by TUSTEP. This
specification will be ignored if not
applicable for certain printers as
defined by the computing center or system
manager.

TUSTEP - 129 - Basics

= + TUSTEP is to supply a cover for the
printed output.

DATEI = - * Output to the printer specified in the
specification DEVICE.

= file Name of the system file to which the
printer control codes are to be written.
More than one file name may be specified.

ERASE = - * If the file given for the specification
FILE already contains data, they are to
be retained.

= + If the file given in the specification
FILE already contains data, they are to
be erased beforehand.

OPTIONS = ... * Specifications for modifying the
generated printer control codes.

SUPPLEMENT = ... Name of a system variable containing
supplementary specifications for the the
operating system (cf. system variable
TUSTEP_LPR page 42). The appropriate
specifications should be obtained from
the respective computing center or system
manager.

PORTION = -STD- The printout should be subdivided into
portions of 500 pages each (for line
printers), or portions of 200 pages each
(for dot matrix and laser printers).

= n The printout should be divided into
portions of n pages each.

Features:

This command is used to print TUSTEP descriptions.

Descriptions currently available and the latest version of each
description have been compiled in a list, which can be printed
or viewed by entering "AB" (German for "Aktuelle Beschreibungen"
(current descriptions) in the specification NAME.

If only certain pages are to be printed, they can be selected
with the specification PAGES.

If a description is to be printed out on a remote printer, (e.g.
one connected to another PC), a permanent system file (TYP=SDF)
can be entered for the specification FILE. The printer control
codes for the specified printer will then be written to this
file. The appropriate operating system command can then be used
to send this system file to the desired printer (e.g. the DOS
PRINT command). If more than one file has been given in the
specification FILE, only the number of pages given in the
specification PORTION will be written to each file. Output will
then proceed to the next file.

 - 130 -

For printing on EPSON compatible matrix printers, the following
options can be specified:

BD bidirectional printing
UD unidirectional printing (default)

H11 page length 11"
H12 page length 12"

LQ letter quality printing (default)
DRAFT draft quality printing

If the command is called with no specifications, the on-line
help will be automatically activated (see #HELP command on page
109).

Restrictions

Under DOS, only the "+" specification for DEVICE has any effect;
all other specifications do not. Output is directed to the
printer previously set with the DOS PRINT command (i.e. at the
operating system level) assuming no file has been given in the
FILE specification.

Note:

Giving the value ZV for the specification NAME results in list
of the TUSTEP character set. This can be used to determine which
TUSTEP characters can be printed on a given printer.

TUSTEP - 131 - Basics

Merging data/files

 MERGE

Command:

#MERGE

Specifications:
SOURCE = file Name of the files containing the data to

be merged.

DESTINATION= file Name of the file to which the merged data
are to be written.

= -STD- The merged data are to be written into
the standard TEXT file.

SORTFIELD = sf-A The input data have been sorted according
to the sort field sf, in ascending order.

= sf-D The input data have been sorted according
to the sort field sf, in descending
order.

= sf as in sf-A

One of the following can be specified for
sf:

0 Sorting according to record numbers

n-m The sort field starts with character
position n and ends with character
position m.

n+m The sort field starts with character
position n and is m characters long.

More than one sort field is allowed.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

DELETE = - * The records are to be written into the
DESTINATION file unaltered.

= n-m Before the data are written into the
DESTINATION file, the characters from
position n to position m are to be
eliminated from each record.

 - 132 -

= n+m Before the data are written into the
DESTINATION file, m characters starting
with position n are to be eliminated in
each record.

= + Only the data in the DATA file are to be
written to the DESTINATION file in the
sorted sequence.

DATA = - * No DATA file (normal case).

= file On merging, the data are read from the
given DATA file and written in the same
order to the DESTINATION file.

= -STD- On merging, the data are read from the
standard DATA file and written in the
same order to the DESTINATION file.

Features:

With this command, files containing sorted data can be merged.

The specifications given for SORTFIELD must be identical to
those given for this specification in the command #SORT when
sorting the files to be merged.

This program does not check whether the data have actually been
sorted according to the specified sort field. The sort field is
only used to determine which record read from the various files
is to be the next record written to the DESTINATION file.

If the sort fields of records contained in different SOURCE
files are identical, the order in which the records are written
to the DESTINATION file is the same as the sequence in which the
corresponding files are given for the specification SOURCE.
The specification DELETE can be used to delete sort fields which
are no longer needed after sorting.

Copying from magnetic tape to magnetic tape

 MTCOPY

Command:

#MTCOPY

Specifications:
STAPE = Reel (ID) number of the magnetic tape

from which files are to be copied (source
tape). The reel number may consist of
letters and digits only.

 - 133 -

SNUMBER = -STD- * The last file (i.e. the most recent
version) having the corresponding name is
to be copied.

= n The first file having the corresponding
name is to be copied, with the search
starting at the nth file on the source
tape.

SLABEL = -STD- * All files starting from file position n
given in the specification SNUMBER are to
be copied. If the value for the
specification SNUMBER is -STD- (default
value), only the last (i.e. the most
recent) file of all files with the same
file name will be copied.

= name Name of the file to be copied. More than
one file name is allowed.

SCODE = ASCII The data on the source tape have been
written in ASCII code (with ANSI-label).

= EBCDIC The data on the source tape have been
written in EBCDIC code (with IBM-label).

SDEVICE = -STD- * A tape unit specified by the system is to
be used for the source tape. Under UNIX
and VMS the tape unit is set by the
system variable TUSTEP_MT1.

= name Under UNIX and VMS: Name of the system
variable specifying the name of the tape
unit for the source tape.

DTAPE = Reel (ID) number of the magnetic tape
onto which files are to be copied
(destination tape). The reel number may
consist of letters and digits only.

DNUMBER = -STD- * The file(s) shall be written after the
last file on the destination tape.

= n The file(s) shall be written onto the
tape starting at the nth file position.

DLABEL = -STD- * The name(s) of the file(s) on the
destination tape shall be the same as the
name(s) on the source tape.

= name The file(s) on the destination tape shall
have the name(s) given here. The number
of names must agree with the number of
files given for the specification SLABEL.
If the value -STD- is given for the
specification SLABEL, the value -STD-
must also be given for the specification
DLABEL.

Basics - 134 - TUSTEP

DCODE = ASCII The tape is to be written in ASCII code
(with ANSI-label).

= EBCDIC The destination tape is to be written in
EBCDIC code (with IBM-label).

DDEVICE = -STD- * A tape unit specified by the sytem is to
be used for the destination tape. Under
UNIX and VMS the tape unit is set by the
system variable TUSTEP_MT2.

= name Under UNIX and VMS: name of the system
variable containing the name of the tape
unit.

DENSITY = 1600 Under BS2000 and MVS: The tape is to be
written with 1600 bpi.

= 6250 * The tape is to be written with 6250 bpi.

LISTING = + * The list of all files on the destination
tape are to written in the journal.

= -STD- The list of all files on the destination
tape are to be written to the standard
LISTING file.

= file Name of the file to which the list of of
all files on the destination tape are to
be written.

ERASE = - * If the LISTING file already contains
data, they are to be retained.

= + If the LISTING file already contains
data, they are to be erased beforehand.

Default values:

The default value for each specification is marked with an
asterisk (*). The default values for the specifications SCODE
and DCODE depend on the operating system:

 ASCII: UNIX, VMS
 EBCDIC: BS2000, MVS, VM/CMS

Features:

With this command, files can be copied directly from one
magnetic tape to another. The files to be copied can be
specified by the user.

After the files are copied, a list of the files located on the
destination tape can be created. This list corresponds to that
generated with the command #INFORM (see page 111).

 - 135 -

Warning:

If the files are not copied after the last file on the tape, the
file which is thus overwritten and all following files already
on the tape will be lost.

If the specifications SNUMBER=-STD- (default value) and
SLABEL=-STD- (default value) are given, not all files will be
copied if the source tape contains files with the same name. In
this case, of all files with identical names, only the last one
(i.e. the most recent version) will be copied. If all files are
to be copied, the specification SNUMBER=1 must be given.

Note:

If the tape being written to is used for the first time or is
written to at its beginning, the specification DNUMBER must be 1
(DNUMBER=1).

Restrictions:

All files recorded on the source tape must have been written
with the command #MTWRITE or #MTCOPY.

Files must be written to the destination tape either from the
beginning of the tape, or all files already present on the
destination tape must have been written with the commands
#MTWRITE or #MTCOPY.

The destination tape must be labeled. Unlabeled tapes will be
rejected for reasons of data security. They can be labeled with
the command #MTLABEL (see page 139).

Because standard labels are used, all files on a tape must be
written onto the tape in the same code.

When giving a value for the specifications SCODE and DCODE, the
following points should be considered:

- BS2000, UNIX, VM/CMS and VMS versions: If the wrong code is
given for the source tape, it will be automatically adjusted
to the code in which the tape has been written. When the first
file is written onto the destination tape, the code can be
freely chosen; if necessary, the tape will be relabeled. If a
file is not to be written to the beginning of the tape and the
wrong code is given, the code is automatically adjusted to the
code used on the tape up to this point.

- MVS version: only the code used by the computing center to
label the source tape and the destination tape is allowed. If
a different code is given, the operator will not be able to
assign the tape properly.

Under the operating system MVS, some computing centers can only
use magnetic tapes in batch mode. In this case, the error
message "No magnetic tape permission" will appear. Batch jobs
can be started with the command #EXECUTE (cf. page 97). At some
computing centers, a standard macro called #*MTC is available

 - 136 -

which will start such a batch job. It has the same
specifications as the command #MTCOPY. Additional information
relating to this can be obtained with the command #INFORM,*MTC.

Warning:

When using ASCII code for writing or reading magnetic tapes
under the operating system MVS, most computing centers use 7-bit
mode (instead of 8-bit mode). In this case, characters encoded
with the escape character "^" (e.g. the German umlauts ä, ö and
ü) will be lost.

If a file on the tape contains such characters and if only a
7-bit data transfer is possible, the tape cannot be read without
losing these characters. The loss of these characters can be
prevented by using a tape to which the files are written in
EBCDIC code or which contains only 7-bit ASCII-characters.

The latter can be achieved by using the command #CONVERT,...,
MODE=-1CODE=- before the data are written onto magnetic tape.
This command converts the data into 7-bit ASCII characters.
After these data have been read from the magnetic tape, they can
be converted back into TUSTEP code with the command
#CONVERT,...,MODE=+1,CODE=-.

TUSTEP - 137 - Basics

Information about a magnetic tape

 MTINFORM

Command:

#MTINFORM

Specifications:
TAPE = Reel (tape ID) number of the magnetic

tape for which file information is
requested. The reel number may consist of
letters and digits only.

LISTING = + * The list of files is to be written into
the journal.

= -STD- The list of files is to be written to the
standard LISTING file.

= file Name of the file to which the list of
files is to be written.

ERASE = - * If the file given for the specification
LISTING file already contains data, they
are to be retained.

= + If the file given for the specification
LISTING file already contains data, they
are to be erased beforehand.

CODE = ASCII The data have been written to the tape in
ASCII-code (with ANSI label).

= EBCDIC The data have been written to the tape in
EBCDIC code (with IBM label).

DEVICE = -STD- * The system tape unit is to be used; under
UNIX and VMS the tape unit is set with
the system variable TUSTEP_MT1.

= name Under UNIX and VMS: name of the system
variable containing the name of the tape
unit.

Default values:

The default values for the specifications are marked with an
asterisk (*). The default value for the specification CODE
depends on the operating system.

 ASCII: UNIX, VMS
 EBCDIC: BS2000, MVS, VM/CMS

Basics - 138 - TUSTEP

Features:

This command provides information about files written to
magnetic tape. The names of the files, the date they were
written onto the tape with #MTWRITE and the number of records
they contain will be listed.

Notes:

If files are copied to magnetic tape with the commands #MTWRITE
or #MTCOPY, these commands can also be used at the same time to
create a list of files currently on the magnetic tape. The
format of these file lists correspond to that of lists created
with the command #INFORMIERE.

If such a file list is compiled from different magnet tapes and
is to be written to the same file (without erasing any data
contained therein), the standard macro #*MTISORT can be used to
sort this file. Here only the most recent file list for each
tape will be used to list files; the file list is then sorted
according to tape number. An additional listing of files can
also be created where files are sorted by file name. This lets
the user see which files are located on which magnetic tape as
well as the date they were copied from disk to magnetic tape.
Further information can be obtained with the command
#INFORM,*MTISORT.

Restrictions:

All files recorded on the magnetic tape must have been written
with the commands #MTWRITE or #MTCOPY.

When giving a value for the specification CODE, the following
points should be considered:

- BS2000, UNIX, VM/CMS and VMS versions: If the wrong code is
given, it will be automatically adjusted to the code in which
the files were written onto the tape.

- MVS version: Only the code in which the magnetic tape was
labeled by the computing center is allowed. If another code is
given for the specification CODE, the operator cannot assign
the tape properly.

MVS operating system: At some computing centers magnetic tapes
can only be used in batch jobs. In this case, the error message
"No magnetic tape permission" will appear. Batch jobs can be
started with the command #EXECUTE (cf. page 97). Some computing
centers (e.g. in Tübingen) offer a standard macro called #*MTI
which will start such a batch job. It has the same
specifications as the command #MTINFORM. Further information
relating to this macro can be obtained with the command
#INFORM,*MTI .

TUSTEP - 139 - Basics

Adding/removing label of a magnetic tape

 MTLABEL

Command

#MTLABEL

Specifications
TAPE = Reel (ID) number of the tape to be

labelled, or whose label is to be
removed. This ID may only consist of
alphanumeric characters.

DENSITY = 1600 Under BS2000 and MVS: the tape is to be
labeled with 1600 bpi.

= 6250 * Under BS2000 and MVS: the tape is to be
labeled with 6250 bpi.

CODE = ASCII The tape is to be labeled/is already
labeled in ASCII-Code (with an ANSI
label).

= EBCDIC The tape is to be labeled/is already
labeled in EBCDIC-Code (with an
IBM-Label).

DEVICE = -STD- * A tape unit set by the operating system
is to be used; under UNIX and VMS the
tape unit is set with the system variable
TUSTEP_MT1.

= name Under UNIX and VMS: name of the system
variable which sets the name of the tape
unit.

OWNER = Name of the owner which is to appear on
the tape às label. The name may be up to
14 characters long.

= - The tape is already labelled - remove
label.

Default settings

An asterisk (*) marks the default setting for a specification.
The default setting for the specification CODE depends on the
operating system being used.

 ASCII: UNIX, VMS
 EBCDIC: BS2000, MVS, VM/CMS

Basics - 140 - TUSTEP

Features

This command can be used to label unlabelled magnetic tapes or
unlabel tapes already labelled. When a tape is labelled, a
volume label is written at the beginning of the tape so that it
can be written with the commands #MTWRITE and #MTCOPY. When a
tape is unlabelled, its volume label will be overwritted with
zeros, so that the tape can be later written with programs that
require unlabelled tapes.

Warning

Whenever a label is either added or removed, all data on the
tape will be lost.

Restrictions

This command has not been implemented for the MVS operating
system.

 - 141 -

 Reading files from magnetic tape

 MTREAD

Command:

#MTREAD

Specifications:
TAPE = Reel (ID) number of the magnetic tape

from which the file is to be read. The
reel number may consist of alphanumeric
characters only.

NUMBER = -STD- * The last file (i.e. the most recent
version) having the corresponding name is
to be read.

= n The first file having the corresponding
name is to be read, with the search
starting at file position n on the tape.

FILE = file Name of the file to which the data read
from the tape are to be written. More
than one file name is allowed.

LABEL = -STD- * The names of the files read from the tape
are identical to those given for the
specification FILE.

= name The files to be read from tape have the
names entered here. The number of names
must agree with the number of files given
in the specification FILE.

ERASE = - * If the files given for the specification
FILE already contain data, their data are
to be retained.

= + If the files given for the specification
FILE already contain data, their data are
to be erased beforehand.

CODE = ASCII The data have been written to tape in
ASCII-code (with an ANSI label).

= EBCDIC The data have been written to tape in
EBCDIC-code (with an IBM label).

DEVICE = -STD- * A tape unit set by the operating system
is to be used; under UNIX and VMS the
tape unit is set with the system variable
TUSTEP_MT1.

Basics - 142 - TUSTEP

= name Under UNIX and VMS: name of the system
variable which specifies the name of the
tape unit.

Default settings

An asterisk (*) marks the default setting for a specification.
The default setting for the specification CODE depends on the
operating system being used.

 ASCII: UNIX, VMS
 EBCDIC: BS2000, MVS, VM/CMS

Features:

With this command, files can be copied from tape to disk.

Restrictions:

All files recorded on the magnetic tape must have been written
with the commands #MTWRITE or #MTCOPY.

When giving a value for the specification CODE, the following
points should be considered:

- BS2000, UNIX, VM/CMS and VMS versions: if the wrong code is
given for the tape, it is automatically adjusted to the code
with which the tape has been written.

- MVS version: only the code used by the computing center to
label the magnetic tape is allowed. If a different code is
specified here, the operator will not be able to assign the
tape properly.

Under the operating system MVS, some computing centers can only
use magnetic tapes in batch jobs. In this case, the error
message "No magnetic tape permission" will appear. Batch jobs
can be started with the command #EXECUTE (cf. page 97). At some
computing centers, a standard macro called #*MTR is available
which will start such a batch job. It has the same
specifications as the command #MTREAD. Additional information
relating to this can be obtained with the command #INFORM,*MTR .

Warning:

When using the ASCII code for writing or reading magnetic tapes
under the operating system MVS, most computing centers use 7-bit
mode (instead of 8-bit mode). In this case, characters encoded
with the escape character "^" (e.g. the German umlauts ä, ö and
ü) will be lost.

If a file on the tape contains such characters and if only a
7-bit data transfer is possible, the tape cannot be read without
losing these characters. The loss of these characters can be
prevented by using a tape to which the files are written in
EBCDIC-code or which contains only 7-bit ASCII-characters.

 - 143 -

The latter can be achieved by using the command #CONVERT,...,
MODE=-1,CODE=- before the data are written onto magnetic tape.
This command converts the data into 7-bit ASCII-characters.
After these data have been read from the magnetic tape, they can
be converted back into TUSTEP code with the command
#CONVERT,...,MODE=+1,CODE=-.

Basics - 144 - TUSTEP

Writing files to magnetic tape

 MTWRITE

Command:

#MTWRITE

Specifications:
TAPE = Reel (ID) number of the magnetic tape to

which the file is to be written. The reel
number may consist of alphanumeric
characters only.

NUMBER = -STD- * The files are to be written after the
last file on the tape.

= n The file is to be written onto the tape
starting at file position n.

FILE = name Name of the file to be written onto the
tape. More than one file name is allowed.

LABEL = -STD- * The name of the file on the tape shall be
the same as the name given for the
specification FILE.

= name The file on the tape shall be given the
name specified here. The number of names
must agree with the number of files given
for the specification FILE.

DENSITY = 1600 Under BS200 and MVS: the data are to be
written to the tape with 1600 bpi.

= 6250 * Under BS2000 and MVS: the data are to be
written to the tape with 6250 bpi.

CODE = ASCII The data are to be written to the tape in
ASCII code (with an ANSI label).

= EBCDIC The data are to be written to the tape in
EBCDIC code (with an IBM-label).

DEVICE = -STD- * A tape unit set by the operating system
is to be used; under UNIX and VMS the
tape unit is set with the system variable
TUSTEP_MT1.

= name Under UNIX and VMS: name of the system
variable which specifies the name of the
tape unit.

LISTING = + * The list of all files on the tape are to
written to the journal.

 - 145 -

= -STD- The list of all files on the tape are to
be written to the standard LISTING file.

= file Name of the file to which the list of all
files on the tape are to be written.

ERASE = - * If the LISTING file already contains
data, they are to be retained.

= + If the LISTING file already contains
data, they are to be erased beforehand.

Default values:

The default values for the specifications are marked with an
asterisk (*). The default value for the specification CODE
depends on the operating system being used:

 ASCII: UNIX, VMS
 EBCDIC: BS2000, MVS, VM/CMS

Features:

With this command, files can be copied from disk to tape (for
data backup and data exchange).

After the files are copied, a list of the files located on the
tape can be created. This list corresponds to that generated
with the command #INFORM (see page 111).

Warning:

If the files are not copied after the last file on the tape, the
file which is thus overwritten and all following files already
on the tape will be lost.

to be copied, the specification SNUMBER=1 must be given.

Note:

If the tape being written to is used for the first time or is
written to at its beginning, the specification NUMBER must be 1
(NUMBER=1).

The files can be copied back from tape to disk with the command
#MTREAD (see page 141)

Restrictions:

Files must be written to the magnetic tape either from the
beginning of the tape, or all files already present on the tape
must have been written with the command #MTWRITE or #MTCOPY.

Basics - 146 - TUSTEP

The magnetic tape must be labeled. Unlabeled tapes will be
rejected for reasons of data security. They can be labeled with
the command #MTLABEL (see page 139).

Because standard labels are used, all files on a tape must be
written to the tape in the same code.

When giving a value for the specification CODE, the following
points should be considered:

- BS2000, UNIX, VM/CMS and VMS versions: When the first file is
written to the destination tape, the code can be freely
chosen; if necessary, the tape will be relabeled. If a file is
not to be written to the beginning of the tape and the wrong
code has been given by mistake, the code is automatically
adjusted to the code used on the tape up to this point.

- MVS version: only the code used by the computing center to
label the source tape and the destination tape is allowed. If
a different code is given, the operator will not be able to
assign the tape properly.

Under the operating system MVS, some computing centers can only
use magnetic tapes in batch mode. In this case, the error
message "No magnetic tape permission" will appear. Batch jobs
can be started with the command #EXECUTE (cf. page 97). At some
computing centers, a standard macro called #*MTW is available
which will start such a batch job. It has the same
specifications as the command #MTWRITE. Additional information
relating to this can be obtained with the command #INFORM,*MTW.

Warning:

When using ASCII code for writing or reading magnetic tapes
under the operating system MVS, most computing centers use 7-bit
mode (instead of 8-bit mode). In this case, characters encoded
with the escape character "^" (e.g. the German umlauts ä, ö and
ü) will be lost.

If a file on the tape contains such characters and if only a
7-bit data transfer is possible, the tape cannot be read without
losing these characters. The loss of these characters can be
prevented by using a tape to which the files are written in
EBCDIC code or which contains only 7-bit ASCII-characters.

The latter can be achieved by using the command #CONVERT,...,
MODE=-1CODE=- before the data are written onto magnetic tape.
This command converts the data into 7-bit ASCII characters.
After these data have been read from the magnetic tape, they can
be converted back into TUSTEP code with the command
#CONVERT,...,MODE=+1,CODE=-.

Warning:

If the files are not copied after the last file on the tape, the
file which is thus overwritten and all following files already
on this tape will be lost.

 - 147 -

Note:

If the tape being written to is used for the first time or is
written to at its beginning, NUMBER=1 must be specified.

The files can be copied back from tape to disk with the command
#MTREAD (cf. page 141)

Restrictions:

Files must be written onto the magnetic tape either from the
beginning of the tape, or all files already present on the tape
must have been written with the commands #MTWRITE or #MTCOPY.

The magnetic tape must be labeled. Unlabeled tapes are rejected
for reasons of data security.

Because standard labels are used, all files on a tape must be
written onto the tape in the same code.

When giving a value for the specification CODE, the following
points have to be considered:

- VM/CMS and VMS versions: When the first file is written onto
tape, the code can freely be chosen; if necessary, the tape is
relabeled. If a file is not to be written at the beginning of
the tape, the code is adjusted to the code of the files
already present on the tape, if a different code has been
specified.

- MVS version: Only the code in which the magnetic tape was
labeled by the computing center is allowed. If another code is
given for the specification CODE, the operator cannot assign
the tape.

When using the operating system MVS, at some computing centers
magnetic tapes can only be used in batch jobs. In this case, the
error message "No magnetic tape permission" will appear. Batch
jobs can be started with the command #EXECUTE (cf. page 97). At
some computing centers (e.g. in Tübingen), a standard macro
called #*MTW is available which will start such a batch job. It
has the same specifications as the command #MTWRITE. Further
information relating to this can be obtained with the command
#INFORM,*MTW.

Warning:

When using the ASCII code for writing or reading magnetic tapes
under the operating system MVS, most computing centers use 7-bit
mode (instead of 8-bit mode) for data transfer. In this case,
the characters of the 8-bit TUSTEP character set (e.g. the
German umlauts ä, ö and ü) will be lost.

To avoid this, the data can be converted into 7-bit
ASCII-characters with the command #CONVERT,...,
,0 MODE=-1,CODE=- before they are written to magnetic tape.
After these data have been read from magnetic tape, they can be

Basics - 148 - TUSTEP

converted back to their TUSTEP code with the command
#CONVERT,...,MODE=+1,CODE=-.

 - 149 -

Renumbering references

 NUMBER

Command:

#NUMBER

Specifications:
SOURCE = file Name of the file containing the data

whose numbers and/or references are to be
updated

= -STD- The standard TEXT file contains the data
into whose numbers and/or references are
to be updated.

DESTINATION= file Name of the file to which the data with
the updated numbers and/or references are
to be written

= -STD- The data with the updated numbers and/or
references are to be written to the
standard TEXT file.

MODE = - * Normal case

= PUT The concordance (list of concordant
numbers) of the old and the new numbering
is to be written to the CONCORDANCE file.
Any data already in this file will be
erased regardless of what has been given
for the ERASE specification.

= GET The concordance of the old and the new
numbering is to be read from the
CONCORDANCE file.

= ADD The concordance of the old and the new
numbering in the CONCORDANCE file is to
be supplemented.

ERASE = - * If the DESTINATION file or the LISTING
file already contains data, they are to
be retained.

= + If the DESTINATION file or the LISTING
file already contains data, they are to
be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

CONCORDANCE= - * Normal case

Basics - 150 - TUSTEP

= file Name of the file to which the concordance
of the old and the new numbering is to be
written or which contains the
concordance.

= -STD- The concordance of the old and the new
numbering is to be written to the
standard DATA file or is to be read from
the standard DATA file.

LISTING = - No protocol of the concordance of the old
and the new numbering.

= + A protocol of the concordance of the old
and the new numbering is to be written
into the journal.

= -STD- * A protocol of the concordance of the old
and the new numbering is to be written
into the standard LISTING file.

= file Name of the file to which a protocol of
the concordance of the old and the new
numbering is to be written.

Features:

This program is used to update (running) numbers and their
respective references. this purpose, running numbers can be
inserted at appropriately marked positions in the text. (Old)
numbers already present at these positions will be replaced. At
the same time, any appropriately marked references that refer to
old numbers can be updated.

In addition, this command can also be used to update references
referring to a page-line number at appropriately marked
positions after the page-line makeup has been altered.

Description

For this program there is a special description with the name NU
(cf. #MANUAL on page 128).

TUSTEP - 151 - Basics

Opening files

OPEN

Command:

#OPEN

Specifications:
READ = file Name of the file to be opened for

reading. More than one file name is
allowed.

= - * No files to be opened for reading.

= + * Files selected with the specifications
PROJECT/CARRIER/POSITIVE/NEGATIVE are to
be opened for reading.

WRITE = file Name of the file to be opened for
writing. More than one file name is
allowed.

= - * No files to be opened for writing.

= + * Files selected with the specifications
PROJECT/CARRIER/POSITIVE/NEGATIVE are to
be opened for writing.

SCRATCH = - * (no longer defined)

PROJECT = name Name of the project from which files are
to be opened.

= + Files from the current project are to be
opened.

= -STD- Files of the project set at TUSTEP
initialization are to be opened.

= - * No file belonging to any particular
project is to be opened.

CARRIER = -STD- Files to be opened are located on a data
carrier (disk or disk drive) set by the
system. Under DOS, UNIX and VMS, the
carrier for permanent files is set with
the system variable TUSTEP_DSK.

= name Under DOS, UNIX and VMS: name of the
system variable which sets the path
specification for the files to be opened.
Under DOS, specifying merely the letter
of the drive is sufficient if the path
specificaion contains no directory names.

 - 152 -

POSITIVE = * No positive selection by character
strings occuring in file names

= ... Only those files are to be opened whose
filenames contain at least one of the
character strings specified here.

NEGATIVE = * No negative selection by character
strings occuring in file names

= ... Only those files are to be opened whose
filenames do not contain any of the
character strings specified here.

Features:

In order to access permanent (cataloged) files, they must first
be opened with this command. Files opened for reading can be
read only; files opened for writing can be both read and written
to.

To open all files of a particular project, simply give "+" for
the specification READ or WRITE, and the name of the project for
the specification PROJECT.

To open all files whose name contains a particular character
string, enter the character strings in the specification
POSITIVE which must occur at least once in the file name for the
file to be opened. The specification NEGATIVE can be used to
specify character strings which must not be contained in the
file name for the file to be opened. For a full description of
these specifications, refer to the command #LIST on page 121.

Notes:

Any files having a name not recognized by TUSTEP will be ignored
when files are opened by specifying "+" for READ or WRITE.

The specification PROJECT is only of significance if a "+" has
been given for the specification READ or WRITE. If a file name
has been supplied for these two specifications instead, the
project name must be also specified along with the file name if
the file is not part of the current project. In this case,
giving the project name for the specification PROJECT will have
no effect.

Up to 100 files (excluding those files used by TUSTEP
internally) can be open in a single TUSTEP session. This also
includes files created with the command #CREATE during the same
session. If this limit is reached, existing files must either be
closed with the command #CLOSE (cf. page 64) or erased with the
command #ERASE (cf. page 93) before additional files can be
opened.

 - 153 -

Special note for the MVS version

Files opened for writing cannot be accessed by other jobs or
runs.

Basics - 154 - TUSTEP

Activating/deactivating parameter log

 PARAMETER

Command:

#PARAMETER

Specifications:
MODE = OFF Deactivate logging of parameters

= ON Activate logging of parameters

= NEU Set new parameter interpretation

= ALT Set old parameter interpretation

Features:

This command is used to select whether the TUSTEP programs
should
- list parameters into the journal (MODE=ON) or not (MODE=OFF).
- interpret parameters according to either the new or old

conventions.
If no value is given for the specification MODE, only the
current mode setting will be displayed. When TUSTEP is
initialized, the parameter log is activated.

Parameters can be interpreted according to either "old" or "new"
conventions. The old method of interpreting parameters is the
one first used in TUSTEP and whose concept was based on the
punch card, then the standard medium for the input of data and
programs. The notation used here took into account the fact that
punch cards ordinarily did not distinguish between uppercase and
lowercase letters, and that umlauts were not capable of being
interpreted. The "new" method of interpreting parameters has
been designed with more modern input technology in mind; the
limitations imposed by the "old" method therefore no longer
apply.

Note

The old method of interpreting parameters is, however, still in
effect as the default setting. Future versions of TUSTEP will
use the new method of parameter interpretation as the default
setting. It is therefore recommended that this command be used
in every command sequence for specifying which convention is to
be used to interpret parameters.

For a detailed description of the differences between the old
and new parameter conventions, see the chapter entitled
"Parameters" starting on page 241).

 - 155 -

Pause before executing remaining commands

 PAUSE

Command

#PAUSE

Specifications none

Features

This command is used to interrupt the processing of a command
sequence (at the position given in this command sequence). This
can be useful when, for example, a different diskette is to be
placed in the drive before the next command in a command
sequence. Once activated, the command will inquire how to treat
the remaining comands. The user can answer with one of three
valid responses:

1) H (Hold) Before the remaining commands are carried out,
priority commands shall be executed. Priority commands are
then entered one by one (!). If an empty input line is sent
to the computer (ENTER) instead of a priority command, the
interrupted command sequence will continue.

2) C (Cancel) Cancel remaining commands

3) G (Go) The remaining commands are to be executed.

Basics - 156 - TUSTEP

Preparing an index before sorting

 PINDEX

Command:

#PINDEX

Specifications:
SOURCE = file Name of the file containing the data from

which index entries are to be extracted
or from which a KWIC index is to be
prepared

= -STD- The standard TEXT file contains the data
from which index entries are to be
extracted or from which a KWIC index is
to be prepared.

DESTINATION= file Name of the file to which the index
entries or the entries for the KWIC index
are to be written; more than one file
name is allowed

= -STD- The index entries or the entries for the
KWIC index are to be written into the
standard TEXT file.

MODE = + * Prepare index entries with references

= - Prepare index entries without references

= KWIC Prepare index entries for the KWIC index

ERASE = - * If the DESTINATION file, the DATA file or
the LISTING file already contains data,
they are to be retained.

= + If the DESTINATION file, the DATA file or
the LISTING file already contains data,
they are to be erased beforehand.

PARAMETER = file Name of the file containing parameters.

= * The parameters follow the command and are
ended by *EOF.

DATA = - * The data are to be written in their
entirety to the DESTINATION file

= file Name of the file to which the text part
(i.e. text not required for sorting) of
each record is to be written.

= -STD- The text part of each record is to be
written to the standard DATA file.

TUSTEP - 157 - Basics

LISTING = - * No trace listing

= + Trace listing is to be written to the
journal.

= -STD- Trace listing is to be written into the
standard LISTING file.

= file Name of the file to which the trace
listing is to be written.

Features:

This program can be used to

- decompose texts into appropriate entities for an index (e.g.
for an index of word forms or a KWIC index).

- extract appropriately marked text parts to be used as index
entries (e.g. for preparing an author index, subject index or
geographical index). These entities are then prepared for
subsequent sorting.

Description:

For this command, there is a special description with the name
PI (cf. MANUAL, page 128).

Basics - 158 - TUSTEP

Preparing data for sorting

 PRESORT

Command:

#PRESORT

Specifications:
SOURCE = file Name of the file containing the data to

be prepared for sorting

= -STD- The standard TEXT file contains the data
to be prepared for sorting.

DESTINATION= file Name of the file to which the data
prepared for sorting are to be written.
More than one file name is allowed.

= -STD- The data prepared for sorting are to be
written to the standard TEXT file.

MODE = - Generate sort key only.

= + * Generate sort key and add REF/TYPE/STB.

= R Input data contain REF/TYPE/STB;
add sort key

= K Input data are correcting instructions;
add correction key and, if indicated by
parameter, sort key.

= S Input data are correcting instructions
with correction key; add sort key.

ERASE = - * If the DESTINATION file, DATA file or
LISTING file already contains data, they
are to be retained.

= + If the DESTINATION file, DATA file or
LISTING file already contains data, they
are to be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

DATA = - * The data are to be written to the
DESTINATION file in their entirety.

= file Name of the file to which the text part
of each record is to be written.

 - 159 -

= -STD- The text part of each record is to be
written into the standard DATA file.

LISTING = - * No trace listing

= + The trace listing is to be written to the
journal.

= -STD- The trace listing is to be written to the
standard LISTING file.

= file Name of the file to which the trace
listing is to be written.

Features:

With this command, text units (consisting of one or more input
records, which may also be correcting instructions) can be
prepared for sorting. It is possible to define the criteria for
sorting.

Description:

For this command, there is a special description with the name
PS (cf. the command #MANUAL, page 128).

Basics - 160 - TUSTEP

Print output

 PRINT

Command:

#PRINT

Specifications:
LISTING = file Name of the file containing the data to

be printed.

= -STD- * The standard LISTING file contains the
data to be printed.

TYPE = Type of printer to be used. The types of
printers available depends on the actual
computer being used. To obtain a list of
these, use the command #LIST, PRINTERS

DEVICE = ... Name of the printer to be used. The names
of the available printers may be obtained
from the information bulletin of the
respective computing center.

= + Output to the journal (i.e. in
interactive mode, the screen)

= - No output to a printer. If no file has
been given for the specification FILE,
only the data in the LISTING file will be
syntactically checked.

COPIES = 1 * The data are to be printed once.

= n The data are to be printed n times.

= n*m The data are to be printed n*m times (see
below)

PREFIX = - * No prefix

= * The prefix follows the command #PRINT and
is ended by *EOF.

= file Name of the file containing the prefix.

PAGES = - * The file is to be printed in its entirety

= n / n-m Only page n / pages n to m are to be
printed. More than one page/range may be
specified here.

COVER = -STD- * Whether TUSTEP supplies a cover for the
printed output (cover and end sheets with

TUSTEP - 161 - Basics

user às name) depends on the computer and
printer being used.

= - No cover to be supplied by TUSTEP. This
specification will be ignored if the
computing center does not allow this for
certain printer types.

= + TUSTEP is to supply a cover for the
printed output.

FILE = - * Output to the printer given in the
specification DEVICE.

= file Name of the system file to which the
printer control codes are to be be
written. More than one file name may be
specified.

ERASE = - * If the file given in the specification
FILE already contain data, they are to be
retained.

= + If the file given in the specification
FILE already contains data, they are to
be erased beforehand.

OPTIONS = ... * Specifications for modifying the
generated printer control codes.

SUPPLEMENT = ... Name of a system variable containing
supplementary specifications for the
operating system (cf. system variable
TUSTEP LPR, page 42). The relevant and
necessary supplements for each case may
be obtained from the information bulletin
of the respective computing center.

PORTION = -STD- The printout should be subdivided into
portions of 500 pages each (for line
printers), or portions of 200 pages each
(for dot matrix and laser printers).

= n The printout should be divided into
portions of n pages each.

Features:

This command is used to print files which have already been
prepared for printing (listing files). Normally, these are files
which have been written as listing files in a previously run
TUSTEP program. To print a file which is not a LISTING file, its
data must first be prepared for printing. This can be carried
out with the TUSTEP program FORMAT if the file contains the
necessary formatting instructions that are interpreted by this
program. Otherwise, the TUSTEP program GLISTING can be used.

If only certain pages are to be printed, these can be selected
with the specification PAGES. Page selection is based on the

Basics - 162 - TUSTEP

record numbers in the LISTING file, not on any page number in
the page header. If you wish to select pages based on the page
header number, use the TUSTEP program GLISTING instead.

If more than one copy is to be made of a file (as specified in
the specification COPIES), some operating systems insert a new
cover which may consist of several pages) between each copy. To
save paper, especially when printing many copies of a short
file, it is advisable to use the formula n*m instead of n in the
specification COPIES. In this case, the file specified as the
LISTING file will be copied m times to an internal intermediate
file, which is then printed out n times (with only n covers).

If the printer specified for output cannot be directly accessed
(e.g. if it is connected to another PC), a system file
(TYPE=SDF) can be specified for FILE. This file will contain all
the printer control codes for specified printer type. This
system file can then be sent to the printer using the
appropriate commands of the operating system (for example, the
command PRINT for a PC running under MS-DOS). If more than one
file has been specified for FILE, only the number of pages
specified for PORTION will be written into a file, after which
the next file will be written to.

For printing on EPSON compatible matrix printers, the following
options can be specified:

BD bidirectional printing
UD unidirectional printing (default)

H11 page length 11"
H12 page length 12"

LQ letter quality printing (default)
DRAFT draft quality printing

Restrictions concerning the specification DEVICE

Under DOS, only the "+" specification for DEVICE has any effect.
All other specifications have no effect. If no other
specification has been given for FILE, the print output will be
directed to the printer previously set with the DOS command
PRINT at the operating system level.

TUSTEP - 163 - Basics

Renaming files and project names

 RENAME

Command:

#RENAME

Specifications:
FILENAME = - * No file to be renamed

= name1:name2 Old and new names of the file to be
renamed. More than one name pair may be
specified.

PROJECTNAME= - * No renaming of a project

= name1:name2 Old and new name of the project to be
renamed. More than one name pair may be
specified.

CARRIER = -STD- * The projects to be renamed are located on
the carrier preset by the system. Under
DOS, UNIX and VMS the carrier for
permanent files is set by the system
variable TUSTEP_DSK

= name Under DOS, UNIX and VMS: name of the
system variable containing the path
specification for the projects to be
renamed. Under DOS ll. Under DOS, merely
specifying the relevant disk drive is
sufficient if the path contains no other
directory names.

Features:

With this command, the names of files can be altered (i.e. files
can be renamed). Under DOS, UNIX and VMS: If the old and the new
file name are each given a different project, the old file will
be moved to the project of the new file (i.e. it will be deleted
from the old project and entered in the new project). The "new"
project must already exist (i.e. must be opened beforehand).

This command can also be used to rename projects (directories).
Projects preset by the computing center às operating center
(system manager) may not be renamed.

 - 164 -

Resetting/terminating TUSTEP

 RESET

Command:

#TRESET

Specifications:
TERMINATE = - * TUSTEP is not to be terminated.

= + TUSTEP is to be terminated.

WIPE = + The data in the temporary files are to be
overwritten.

= - The data in the temporary files do not
need to be overwritten.

Features:

This command is used to end a TUSTEP session and thus:

- delete all standard files

- delete all temporary files (scratch files)

- close all opened files

The specification WIPE can be used to specify whether the data
contained in temporary (scratch) files are to be overwritten
(data security!). If nothing is given for this specification,
the data will be overwritten unless another mode has been set
with the command #WIPE (cf. page 173).

In case TUSTEP is not to be terminated, a new TUSTEP session
will be started and initialized after the files have been either
deleted or closed (cf. "Starting TUSTEP", page 48).

TUSTEP - 165 - Basics

Restoring data

 RESTORE

Command:

#RESTORE

Specifications:
SOURCE = file Name of the file containing the data to

be restored (copied).

= -STD- The data to be restored (copied) are
located in the standard TEXT file.

DESTINATION= file Name of the file to which the restored
(copied) data are to be written.

= -STD- The restored (copied) data are to be
written to the standard TEXT file.

MODE = -STD- Normal case
= n Records having the nth ascending order

are to be copied.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

Features:

This command is used to

- copy data from an incomplete (improperly terminated) file to
another file.

- copy records in ascending order to another file. An ascending
record sequence either ends or begins with a record number
that is equal or less than the record number immediately
preceding it.

- copy data from one file to another in order to eliminate any
gaps in the file structure that may have arisen during editing
and thus restore records to their logical order.

Note:

If the restored data are to be made accessible in the SOURCE
file, they must be copied back from the DESTINATION file into
the SOURCE file with an additional command, where ERASE=+. To
avoid the extra task of recopying (especially when working with
large files) and also make available the disk space freed by the

 - 166 -

automatic reorgainzation of data, the following steps are to be
taken:

- create a new file with a new name
 (using the command #CREATE, see page 79),
- restore the data from the old file to the new one
- delete the old file
 (using the command #ERASE, see page 93),
- rename the new file with that of the old file
 (using the command #RENAME, see page 163).

TUSTEP - 167 - Basics

Sorting data/files

SORT

Command:

#SORT

Specifications:
SOURCE = file Name of the file containing the data to

be sorted.

= -STD- The data to be sorted are located in the
standard TEXT file.

DESTINATION= file Name of the file to which the sorted data
are to be written.

= -STD- The sorted data are to be written to the
standard TEXT file.

SORTFIELD = sf-A The data are to be sorted according to
the sort field sf, in ascending order.

= sf-D The data are to be sorted according to
the sort field sf, in descending order.

= sf as sf-A

One of the following can be specified for
sf:

0 Sorting according to record numbers

n-m The sort field starts with character
position n and ends with character
position m.

n+m The sort field starts with character
position n and is m characters long.

More than one sort field is allowed.
More than one sort field is possible.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

DELETE = - * After sorting, the records are to be
written to the DESTINATION file
unchanged.

= n-m Before the data are written to the
DESTINATION file, the characters from

 - 168 -

position n to position m are to be
deleted from each record.

= n+m Before the data are written into the
DESTINATION file, m characters starting
with position n are to be deleted from
each record.

= + Only the data of the DATA file are to be
written into the DESTINATION file in the
sorted sequence.

DATA = - * Normal case).

= file After sorting, the data are read from the
given DATA file and written in the same
order to the DESTINATION file.

= -STD- After sorting, the data are read from the
standard DATA file and written in the
same order to the DESTINATION file.

WIPE = + The data in the sort key files are to be
overwritten before these files are
deleted

= - The data in the sort key files do not
need to be overwritten before these files
are deleted.

Features:

This command is used to sort files. Here the order in which
records are processed is determined by the content of the
specified sort fields. If the contents of a sort field is
identical for two or more records, their order is determined by
the next respective sort field. If no other sort field has been
specified, the order of such records will remain unaltered.

Data to be sorted must have been previously prepared with the
program PRESORT or PINDEX. Exceptions to this rule: only when a
sort of record numbers is desired. The arrangement of records
resulting from the preparation of data is described in the
respective chapters of these programs. This arrangement and the
sequence in which the individual record fields are allocated
during sorting are expressed in the specification for the
SORTFIELD.

In most cases the sort field corresponds to the sort key
generated by the programs PRESORT and PINDEX. Here the length of
this sort field is the result of the overall length of the
individual sort key set by the parameter SSL. It ordinarily
begins at position 1 (if the records do not start with a
reference marker; if so, then it begins at the first position
after the reference marker, which is usually position 17 unless
otherwise specified by parameter IRL).

 - 169 -

If the resorted data are to be located in their original file,
the same file must be specified for SOURCE and DESTINATION. In
this case a "+" must be entered for the specification ERASE in
order to erase the unsorted data before the sorted data are
written to file.

The specification DELETE can be used to eliminate sort keys no
longer needed after sorting is completed.

The sorting process requires intermediate files automatically
created by TUSTEP, which are then erased after sorting is
completed. Should the user wish to overwrite the data in these
files before they are erased for reasons of data security, the
corresponding specification in WIPE can be selected. If no
specification is made, the data will be automatically
overwritten unless a different mode has been set for the command
#WIPE (see page 173).

 - 170 -

Listing TUSTEP statistics

 STATISTICS

Command:

#STATISTICS

Specifications:
LISTING = + * Statistics are to be written to the

journal

= -STD- Statistics are to be written to the
standard LISTING file

= file Name of the file to which the statistics
are to be written

ERASE = - If the LISTING file already contains
data, they are to be retained.

= + If the LISTING file already contains
data, they are to be erased beforehand.

Features:

With this command TUSTEP user-statistics can be listed or
prepared for printing.

However, statistics are kept for the user only if a statistics
file having the name "TUSTEP.USE" has been previously created
with the command
 #CREATE,*TUSTEP.USE,SEQ-P (cf. page 79).

The statistics data can be erased with the command:
 #ERASE,DATA=*TUSTEP.USE (cf. page 93).
In this case, a new user statistics log will be started. If the
statistics file is deleted with the command
 #ERASE,FILE=*TUSTEP.USE (cf. page 93),
statistics will no longer be recorded for the user.

 - 171 -

Setting/clearing sense switches

 SWITCH

Command:

#SWITCH

Specifications:
SET = SWn Set sense switch n. The letters SW may be

omitted. More than one sense switch can
be specified.

= - * Do not set a sense switch

CLEAR = SWn Clear sense switch n. The letters SW may
be omitted. More than one sense switch is
allowed.

= - * Do not clear a sense switch

Features:

With this command, the sense switches can be set or cleared. In
TUSTEP there are seven sense switches, numbered from 1 to 7.
When TUSTEP is initialized, all sense switches are cleared.

If the command is called up without any specifications, only the
current mode of the sense switches will be displayed.

Note:

The sense switches can be used for controling TUSTEP programs.

If +n or -n is given in column 4 and 5 of a parameter, the
parameter will be interpreted only if the sense switch n has the
same setting (+n for set; -n for cleared).

- These sense switches can be inquired in command macros; which
can be used to determine the further processing of the macro.

- For the program COPY, these sense switches can be activated
(with the appropriate parameters) at the beginning of the
internal program sense switch and either set or erased at the
end of the internal program sense switch.

Basics - 172 - TUSTEP

Time

TIME

Command:

#TIME

Specifications: none

Features

This command displays the current time and (except in the MS-DOS
version) the total amount of computing time that has been used.

TUSTEP - 173 - Basics

Wipe (overwrite) data - on/off

WIPE

Command:

#WIPE

Specifications:
MODE = OFF Turn off data wipe function

= ON Turn on data wipe finction

Features:

With this command, the data wipe function can be set, i.e.
whether the data contained in files to be deleted are to be
overwritten (MODE=ON) or not (MODE=OFF). If nothing is given for
the specification MODE, only the current mode will be displayed.
When TUSTEP is initialized, the wipe function is turned on.

Overwriting data concerns not only the explicit deletion of
files with the command #ERASE, but also the automatic deletion
of files with the commands #CLOSE, #RESET and #SORT. Yet each of
these commands also allows the user to decide in each case
whether the data are to be overwritten or not, regardless of the
current setting made with the command #WIPE.

Note:

With some operating systems, it is possible to re-access data
from deleted files. While this may be advantageous for the PC
user, it is not desirable for mainframe operations for reasons
of data security, since other users would have potential access
to private data. For this reason, TUSTEP has a standard feature
which overwrites the data in such files with zeros before they
are deleted.

Basics - 174 - TUSTEP

 E d i t o r

TUSTEP - 175 - Basics

Survey:

Starting the Editor 176
Character codes . 176
Numbering records . 176
Screen display of records 176
Calling up online help 177
Interrupting an Editor instruction 177
Reorganizig files . 177

Basic instructions 179

 B Ending the Editor 179
 I Inserting, entering data 179
 S Showing . 180
 Correcting . 181
 D Deleting a record or a range 183
 C Copying . 183
 R Renumbering, moving a record or a range 184

Organizational instructions 186

 N Listing, defining and deleting file names 186
 L Loading data from a file 186
 U Unloading data to a file 187
 V Querying/switching the EDITOR file 189
 M Listing/setting the mode 189
 T Listing/setting/deleting tabulator settings . . . 190
 F Function keys: executing, listing,defining and deleting
 . 191
 Y Macros: executing/defining/deleting/listing . . . 192
 W Character groups and string groups: listing and defining

 . 193
 E Executing external commands 194
 G Displaying and repeating instructions 194

Extended instructions 197

 S Search conditions 197
 I Insertion conditions 198
 D Deletion conditions 199
 C Copying conditions 199
 R Moving conditions 200
 X Replacing character strings 201

Search instructions for structured data 202

 P Defining/deleting parameters 202
 Q Searching text parts 205
 P Listing/deleting/copying parameters 206

Syntax for record position POS and file range RAN 207
Limiting action to certain columns LIMI 208
Character string search table CSST as conditions 208
Character string comparison table CSCT 210
Character string pairs CSP 210
Screen display adjustments for the Editor (options) . . . 211
Special control commands in the Editor 218

Basics - 176 - TUSTEP

Starting the Editor The procedure for starting the Editor is
described in the chapter "Commands" on page 91.

Character codes:

Coding instructions for individual characters is described in
the chapter "Character sets" (see page 294).

Numbering records in the Editor:

Each record in a TUSTEP file has its own record number. For a
description of how records are numbered in program mode and text
mode, and how these record numbers are interpreted, consult the
sections "Record numbering in program mode" (page 24) and
"Record numbering in text mode" (page 23).

In order for a file to be processed by the Editor, the following
conditions must be met:

- The record number 0 or 0.0 may not be used.
- The records must be numbered in ascending order.
- A record number must not occur more than once (i.e must be

unique).

Normally, record numbers start with 1 or 1.1. Smaller record
numbers may be used (e.g. 0/1 or 0.1) if, for example, a new
record is to be written in front of the first record.

Screen display of records

TUSTEP will try to fit each record into its own line on screen.
Records that do no fit into a single line will be extended as a
continuation line.

A continuation line will start at a blank space between words
whenever possible. If no such blank occurs in the data
concerned, the line will be written to its fullest extent and a
continuation line will be automatically generated. A gravis
character ()̀ is inserted at the end of the line indicates that
no blank space is present in the data entered when it is wrapped
to the next line on screen.

Assuming that record number display has not been suppressed
(according to the relevant modus setting), the record number of
each record will be displayed in the first line of each record.
A continuation line can be recognized by the fact that it is
preceded by no number. E.g. the following example:

TUSTEP - 177 - Basics

 ̀ 1.1 | Short record within one record. Followed by a
 ̀ 1.2 | longer record which cannot fit into a single
 ̀ | line and which requires two continuation
 ̀ | lines. This record is followed by a brief
 ̀ 1.3 | record which fits into a single line.

Calling up online help

Online help (see command #HELP page 109) can be accessed with
the Editor instruction HELP or with the control command HELP. If
online help is accessed with the control command HELP, the
Editor will be in the same condition after the HELP command as
it was before the command was given (online help is effectively
ignored for Editor purposes).

Interrupting an Editor instruction

Extended instructions and search instructions may be interrupted
in the Editor with the control command INTRPT (cf. page 61) and
then entering the instruction I at the prompt:

PROGRAM INTERRUPT- Enter instruction>

Reorganizing files

Files which are continually processed by the Editor should be
reorganized from time to time as described in the section
"Reorganizing a TUSTEP file" (page 24).

Basics - 178 - TUSTEP

Note:

The abbreviations POS, RAN, LIMI , CSST, CSCT, and CSPT are
explained starting on page 207.

If changes are made on screen to a file which has been opened
for reading only, the corresponding error message will appear.
Afterwards, any new instruction will not be accepted until the
screen alteration has been either declared invalid with the
control command IGNORE (see page 228) or deleted with the
control command CLEAR (see page 225). If the Editor is to be
exited (e.g. in order to open the file for writing), this can be
accomplished with the control command CANCEL (see page 228);
here too many screen changes will be ignored.

In all instructions the comma which immediately follows the
instruction letter(s) may be omitted if it is not immediately
followed by another comma.

Instructions which are longer than a single line on screen may
be written in the screen portion where data are normally
displayed. If data are already located here, they may be
previously erased from the screen with CLEAR. If continuation
lines are required for an instruction, these do not have to be
marked as such. Please remember that blanks at the end of an
instruction line will be ignored.

TUSTEP - 179 - Basics

Basic instructions:

Ending:

B Ends the Editor.

The Editor must always be ended with this instruction or
with the control command CANCEL. Otherwise a file opened
for writing will not be properly terminated.

Data from incomplete files (i.e. those not properly
terminated, however, can usually be made accessible by
copying them to another file with the command #RESTORE (see
page 165).

Inserting, entering:

IE Enters records to an empty file or at the end of the file.

Each line on the screen results in a record in the file.
Entering can be finished by entering an empty record with
the ENTER key or a function key.

Note: During data input the control command CR has the same
effect as the control command LF. To send data to the
computer, the control command ENTER must be used.

I, POS#N Inserts N records starting at record position POS (if
a record with the record number POS does not yet exist) or
after the record position POS (if there is already a record
with record number POS).

N can be an estimated maximum. If N=1, # N can be omitted.
Each line on the screen results in one file record. If less
records than specified are to be inserted, inserting can be
finished by entering an empty entry with ENTER or a
function key.

Note: During data input the control command CR has the same
effect as the control command LF. To send data to the
computer, the control command ENTER must be used.

The way in which the inserted records are numbered depends
on how many record numbers are available at this position.
The numbering increment selected will be the largest
possible of the increments 1/0, 0/1, 0/01, 0/001 (the last
mentioned is only possible in text mode). If a different
increment is to be used for numbering the records, it can
be specified after POS. POS and desired increment must be
separated by a semicolon (e.g. 23 ; 0/2 #30). The increment
may be expressed as a line number and/or a distinction
number. If not enough record numbers are available for the
selected increment, the specified increment will be ignored
and a smaller increment will be used.

II, TEXT, RAN: COL Inserts the character string TEXT into every
record of the range RAN.

Basics - 180 - TUSTEP

A delimiter character must be placed before and after the
character string TEXT. This character can be freely chosen
by the user but it must not occur in the character string
itself. For coding the TEXT character string, the same
rules apply those used to code data (see "Character codes"
page 176).

: COL may be omitted. In this case, the character string
TEXT is inserted at the end of each record. If the value N

is given for COL, the character string is inserted starting
at position N of each record (i.e. the characters from
position N to the end of the record are moved to the
right). If + N is given, the character string is inserted
after the character position N (counting the characters
from the beginning of the record). If - N is given, the
characters are counted from the end of the record and the
character string is inserted in front of the respective
character position.

If the value N1- N2 is given for COL, the character string
in the columns N1 to N2 is replaced by the character string
TEXT. The characters after column N2 up to the end of the
record are moved to the left if the character string TEXT

is shorter than the character string N1- N2, or to the right
if it is longer. If only the character in column N is to be
replaced, the value N- N must be given. (Giving only N would
insert the character string TEXT at position N instead of
replacing the character N).

IB, RAN1, RAN2 Inserts the records of the range RAN1 before each
record of the range RAN2.

IA, RAN1, RAN2 Inserts the records of the range RAN1 after each
record of the range RAN2.

If the range into which the records are to be inserted
contains more than 10 records, the user will be asked
beforehand if records should be inserted at so many places.
The user may respond with either Y (yes) or N (no), or a
new instruction may be given (in which case the records are
also not inserted). The number of places where insertion
may occur before this message will appear can be specified
after RAN: COL or RAN2 and separated from it by a number
sign (e.g. (23 ,- 1)# 30).

Showing:

SB Shows the records from the beginning of the file.

SE Shows the records from the end of the file.

SB, POS Shows the records starting with record position POS.

SA, POS Shows the records around record position POS.

ST, POS Shows the records up to record position POS.

TUSTEP - 181 - Basics

S, POS Shows the records beginning with record position POS /
the records around record position POS / the records up to
record position POS, depending on which of the instructions
SB, POS / SA, POS / ST, POS has last been given.If none of
these instructions has been given, S, POS has the same
effect as SA, POS.

After giving a show instruction, the following entries are
possible:

empty entry: scrolls
+ Scrolls forward; thereafter, each empty entry results

in a further scroll towards the end of the file.
- Scrolls backward; thereafter, each empty entry results

in a further scroll towards the beginning of the file.
different instruction: Showing is interrupted and the

instruction given here will be executed.

Correcting:

Every record having its own record number as displayed by
the Editor (e.g. with a show instruction) can be corrected
directly on screen. The corrected record can be then sent
to the computer by pressing the ENTER key or a function
key. It is also possible to send more than one altered
record at a time. However, in many cases a specific
correcting instruction may be more appropriate:

RAN Shows a record or a range for correcting.

This instruction has the following advantages over a show
instruction:

- If, for example, only one record (whose record number is
known) is to be corrected, it takes less time to list
this single record by itself than it does to list several
records covering the whole screen by using a show
instruction.

- If a large range is to be corrected, a show instruction
would have to be given after correcting each screen in
order to display the following records. With this
command, however, the following records are listed
automatically as soon as the the corrected records have
been sent to the computer.

In the file, only records which have been sent to the
computer after being corrected will be altered. Records
which have not been sent to the computer remain unaltered!
Of particular note here: deleting a record and its record
number from the screen does not mean that this record is
deleted from the file.

To erase one or more records on screen, the vertical line
after the record number may be replaced by a minus sign;
the text of the record must be erased on screen. (cp.
control command DEL_REC on page 225). Such a record is not

Basics - 182 - TUSTEP

erased in the file until it has been sent (along with any
other altered records) to the computer.

To join two or more successive records on the screen to a
single record, the vertical line located after the record
number of the second record (or the following records) to
be joined is to be replaced by a minus sign (cp. the
control command JOIN on page 227). The records are not
joined in the file until they (and any other altered
recordes) have been sent to the computer.

To add new records to those already shown on screen, these
new records and their record numbers can be inserted
directly on screen: the vertical line between record number
and text must be replaced by a plus sign (cp. control
commands INS_LINE on page 222 and SPLIT on page 222). Such
records are not inserted into the file until they (along
with any other altered records) have been sent to the
computer.

On display devices without a vertical line (this is usually
the case with those using a German character set) an equals
sign is used instead of the vertical line located between
the record às number and its text.

The following contains several examples where the changes made
on screen may not have produced the desired result. But first an
important note:

The effects of any changes made on screen is determined only by
the screen content at the time such changes are sent to the
computer. The contents of the screen before any changes were
made is no longer relevant; no comparison will be made of screen
contents before and after alterations in order to determine any
differences and write these to file.

Before changing: After changing: Result in the file:

 ̀ 1.1 | one ̀ 1.2 | two 1.1 one
 ̀ 1.2 | two ̀ | three 1.2 two three
 ̀ | three

Record 1.1 remains unaltered. Reason: this record (more
precisely, this record number) is no longer displayed on screen
and thus (like all other file records not shown on screen)
remains unaltered. Record 1.2 also remains unaltered. Reason: no
changes have been made in this record. It the user wishes to
delete record 1.1 in its entirety, the record number must be
marked with a "-" (e.g. using the control command DEL_REC) and
the text of the record must be deleted from the screen. Another
possibility would be to delete this record using the instruction
"d!1.1".

Before changing: After changing: Result in the file:

 ̀ 1.1 | one ̀ 1.1 | one 1.1 one two three
 ̀ 1.2 | two ̀ | two 1.2 two three
 ̀ | three ̀ | three

TUSTEP - 183 - Basics

To record 1.1 the text "two three" has been added. Reason: there
is no record number in front of "two" and "three"; these lines
are therefore regarded as continution lines of the previous
line. Record 1.2 remains unaltered. Reason: this record (more
precisely, this record number) is no longer displayed on screen
and thus (like all other file records not shown on screen)
remains unaltered. If the user wishes to append the contents of
record 1.2 to that of record 1.1 and then delete record 1.2, the
record number 1.2 must be marked with a "-".

Before changing: After changing: Result in the file:

 ̀ 1.1 | one ̀ 1.1 | one 1.1 one two three
 ̀ 1.2 | two ̀ 1.2 - two
 ̀ | three ̀ | three

Record 1.2 is deleted. Reason: the record number has been marked
with a "-". To record 1.1 the text "two three" has been
appended. Reason: record number 1.2 has been marked with a "-",
which deletes this record. The text "two" following the deleted
record number is now regarded as a continuation of the preceding
line, as if the line containing "two" has no record number
preceding it. Similarly, the text "three" is preceded by no
record number, which makes this line a continuation line of the
preceding line. It the user wishes to delete record 1.2 in its
entirety, the record number must be marked with a "-" (e.g.
using the control command DEL_REC) and the record às text ("two
three") must be deleted from the screen.

Deleting records

D!, RAN Deletes a record or range

If the range to be deleted contains more than 10 records,
the user will be asked beforehand if so many records should
be deleted. The user may respond with either Y (yes) or N

(no) or a new instruction may be given (in which case the
records are also not deleted). The number of records that
can be deleted before this message will appear can be given
after RAN and separated from it by a number sign (e.g.
(23 ,- 1)# 30).

Copying records

C, RAN, POS Copies a record or a range.

C, FILE , RAN, POS Copies a record or a ran from a different file.

C, FILE , SEGMENT, POS Copies a segment from a different file.

The record or range RAN will be copied into the file
starting at record position POS (if a record with the
record number POS does not yet exist) or after record
position POS (if there is already a record with the record
number POS). If the record or the range is to be copied to
the end of the file, POS may be omitted. In text mode, the

Basics - 184 - TUSTEP

first new record copied to the end of the file is given the
number n.1, where n is one page number larger than that of
the file às last record.

The way in which the inserted records are numbered depends
on how many record numbers are available at this position.
The numbering increment selected will be the largest
possible of the increments 1/0, 0/1, 0/01, 0/001 (the last
mentioned is only possible in text mode). If a different
increment is to be used for numbering the records, it can
be given after POS. The POS and increment must be separated
by a semicolon (e.g. 23 ; 0/2 #30). The increment may be
expressed as a line number and/or a distinction number. If
there is not enough record numbers available for the
selected increment, the specified increment will be ignored
and a smaller increment will be used.

If the range to be copied contains more than 10 records,
the user will be asked beforehand if so many records should
be copied. The user may respond with either Y (yes) or N

(no), or a new instruction may be given (in which case the
records are also not copied). The number of records that
can be copied before this message will appear can be given
after RAN and separated from it by a numbers sign (e.g.
(23 ,- 1)# 30).

Renumbering and moving records

R, RAN, POS Renumbers a record or range and, if necessary, moves
the respective record or range.

The record number(s) of a record or a range RAN will be
altered and, if necessary, the record or the range will be
moved, so that its new position in the file starts at
record position POS (if a record with the record number POS

does not yet exist) or after record position POS (if there
is already a record with the record number POS). If the
record or the range is to be moved to the end of the file,
POS may be omitted. In text mode, the first new record
copied to the end of the file is given the number n.1,
where n is one page number greater than that in the file às
last record. However, POS must be specified if RAN is
omitted in order to renumber all records in the file.

The way in which the records are numbered depends on how
many record numbers are available at this position. The
numbering increment selected will be the largest possible
of the increments 1/0, 0/1, 0/01, 0/001 (the last mentioned
is only possible in text mode). If a different increment is
to be used for numbering the records, this can be specified
after POS. The POS and increment must be separated by a
semicolon (e.g. 23 ; 0/2 #30). The increment may be expressed
as a line number and/or a distinction number. If not enough
record numbers are available for the selected increment,
the specified increment will be ignored and a smaller
increment will be used.

TUSTEP - 185 - Basics

If the range to be renumbered contains more than 100
records, or the range to be moved more than 10 records, the
user will be asked beforehand if so many records should be
either renumbered or moved. The user may respond with
either Y (yes) or N (no) or a new instruction may be given
(in which case the records are also neither renumbered nor
moved). The number of records that can be renumbered or
moved before this message will appear can be specified
after RAN and separated from it by a numbers sign (e.g.
(23 ,- 1)# 30).

Note: If the records of a file numbered in text mode are to
be renumbered for switching to program mode, this can be
accomplished with the following insztruction: R,, 0. 0/1 ; /1

(for more than 9999 records: R,, 0. 0/1 ; /01 - for more than
99999 records: R,, 0. 0/1 ; /001).

Basics - 186 - TUSTEP

Organizational instructions

The Editor is designed in a way which normally allows TUSTEP
files to be edited directly. If a copy of the file is to be
edited instead, the original file can be copied outside of the
editor to a working file, which is then copied back to the
original file after it has been edited. This process of copying,
however, can be accomplished within the Editor by using the LOAD
and UNLOAD instructions, which copy files to and from the Editor
file. System files can also be edited in this manner.

Listing, defining and deleting file names and segment names

Names can be defined for FILE and SEGMENT which are to be used
in subsequent Load and Unload instructions if the names are
omitted in these instructions. Names can also be defined by
being specified in a Load or Unload instruction, thus replacing
any names previously defined by the respective name instruction.
The defined names are also replaced whenever a new EDITOR file
is used (cf. file instruction V).

N Lists the names defined for FILE and SEGMENT.

N, FILE ,- Defines the name for FILE and deletes the name
defined for SEGMENT.

N, FILE , SEGMENT Defines the names for FILE and SEGMENT.

If FILE is omitted and only SEGMENT is given, only the name
specified for SEGMENT will be redefined.

N! deletes names defined for FILE and SEGMENT.

Loading (copying) data:

a) of a file

L, FILE ,- Copies the TUSTEP or system file FILE to the EDITOR
file. The data in the EDITOR file will be overwritten.

If FILE is omitted, the name defined for FILE (cf. Name
instruction) will be used. If a name has been defined for
FILE but no name has been defined for SEGMENT, FILE can be
omitted.

If the EDITOR file contains data which have not yet been
unloaded to a file since being last altered, this
instruction will be rejected. If the data are to be
overwritten anyway, the following instruction must be
given.

L!, FILE ,- Copies the TUSTEP or system file FILE into the
EDITOR file. If the EDITOR file already contains data, they
will be overwritten without any warning message.

TUSTEP - 187 - Basics

If FILE is omitted, its defined name (cf. Name instruction
N) will be used. If a name has been defined for FILE but
none for SEGMENT, , FILE ,- can be omitted.

b) of a segment

L, FILE , SEGMENT Copies the segment SEGMENT from the SEGMEMT
file FILE to the EDITOR file. The data in the EDITOR file
will be overwritten.

If FILE or , FILE , SEGMENT is omitted, the defined names (cf.
name instruction N) will used instead.

If the EDITOR file contains data which have not yet been
unloaded to a file since being last altered, this command
will be rejected. If the data are to be overwritten anyway,
the following instruction must be used.

L!, FILE , SEGMENT Copies the segment SEGMENT from the SEGMENT
file FILE to the EDITOR file. If the EDITOR file already
contains data, they will be overwritten without any warning
message.

If FILE or , FILE , SEGMENT is omitted, the corresponding
defined names (cf. name instruction N) will used instead.

c) of a segment file às table of contents

L, FILE ,? Copies the table of contents from the segment file
FILE to the EDITOR file. The data in the EDITOR file will
be overwritten.

If FILE is omitted, its defined name (cf. name instruction
N) will be used.

If the EDITOR file contains data which have not yet been
unloaded to a file since their last alteration, the command
will be rejected. If the data are to be overwritten anyway,
the following instruction must be used.

L!, FILE ,? Copies the table of contents from the segment file
FILE to the EDITOR file. The data in the EDITOR file will
be overwritten without any warning message.

If FILE is omitted, its defined name (cf. name instruction
N) will be used.

Unloading (saving) data:

a) to a file

U, FILE ,- Copies the EDITOR file to the TUSTEP or system file
FILE .

Basics - 188 - TUSTEP

If FILE is omitted, its defined name (cf. name instruction
N) will be used. If a name has been defined for FILE but
none for the segment, , FILE ,- can be omitted.

If the file FILE already contains data, this command will
be rejected. If these data are to be overwritten anyway,
the following instruction must be used.

U!, FILE ,- Copies the EDITOR file to the TUSTEP or system file
FILE .

If FILE is omitted, its defined name (cf. name instruction
N) will be used. If a name has been defined for FILE but
none for the segment, , FILE ,- can be omitted.

If the file FILE already contains data, they will be
overwritten.

a) to a segment file

U, FILE , SEGMENT Copies the EDITOR file to the segment file FILE

under the segment name SEGMENT.

If FILE or , FILE , SEGMENT is omitted, the name defined for
each of them (cf. name instruction N) will be used instead.

If the segment file already contains a segment having the
name specified here, this instruction will be rejected. If
an already existing segment is to be replaced, the
following instruction must be used.

U!, FILE , SEGMENT Copies the EDITOR file to the segment file
FILE under the segment name SEGMENT.

If FILE or , FILE , SEGMENT is omitted, the names defined for
each of them (cf. name instruction N) will used instead.

If the segment file already contains a segment having the
name specified here, this segment will be replaced.

If the EDITOR file is empty, the user will be asked if the
entire segment in the segment file should be deleted. The
following responses may be given:

Y The segment will be deleted and the name of the segment
will be struck from the table of contents.

N The segment will be deleted (!), but the name of the
segment will remain in the table of contents.

new instruction: The segment will remain in the segment
file unchanged.

TUSTEP - 189 - Basics

Deleting a segment

If a segment in a segment file is to be deleted with the Editor,
the Editor file must be empty. The empty Editor file can then be
"saved" to this segment using the Unload instruction
U!, FILE , SEGMENT described above. In this case, the Editor will
first ask whether the entire segment in the segment file should
be deleted, which is answered as described above: N to delete
only the contents of the segment, J to strike the name of the
segment from the table of contents for the segment file.

Inquiring or switching the name of the EDITOR file/

V Shows the name of the file presently being processed with
the Editor.

V, FILE Changes the file to be processed with the Editor.

After changing the EDITOR file, the names defined for FILE

and SEGMENT (cf. name instruction N) will be automatically
replaced by the names last defined when the new EDITOR file
was previously edited.

V,-STD- The standard EDITOR file is to be edited.

Listing/setting the mode:

a) Numbering and character display

A complete mode specification consists of three subvalues

The first subvalue can be either "+" or "-". It specifies
whether the records displayed on screen (e.g. after a Show
instruction) are to be shown with (+) or without (-) their
record numbers. One exception here are the "search instructions
for structured data", which are always displayed without record
numbers regardless of the setting specified in the first
subvalue. Please note that records without record numbers cannot
be corrected.

The second subvalue can be either "T" or "P". It specifies
whether the records are to be numbered in text mode (with page
number) or in program mode (without page number).

The third subvalue can be either "+" or "-". It specifies
whether accent letters and characters encoded with the control
character "#" are to be displayed on screen as such (+) or in
their encoded (input) form (-). For example, whether an "e" with
an accent grave should be displayed as è (+) or as %\e (-).
However, this setting is only effective when a code table
supporting these characters has been previously set with the
command #DEFINE (see page 83).

M Lists the presently set mode

Basics - 190 - TUSTEP

M,... Mode ... is set. A three-digit mode specification must
be entered for "...", as described above for a complete
mode specification. It is also permissible to enter just
the first subvalue, or the first two subvalues of this mode
specification.

M,T Set mode T: record numbering in text mode.

M,P Set mode P: record numbering in program mode.

Note: If the switch from mode T to mode P is not possible
because the record numbers are too large, the records can
also be renumbered in program mode with the instruction
R,, 0. 0/1 ; /1 (for more than 9999 records use: R,, 0. 0/1 ; /01 -
for more than 99999 records use: R,, 0. 0/1 ; /001).

b) Text windows

The Editor displays data in a single text window (full screen)
unless one of the next two instructions are given for splitting
the screen into an upper and lower window. The two screens can
be used to edit the same file or two different files (by
changing the file to be edited with the file instruction V).

M,1 Split screen, upper text window active.

M,2 Split screen, lower text window active.

M,0 Use only one text window (full screen display)

Due to the limitation imposed by individual operating systems,
only one text window is possible under BS2000, MVS and VM/CMS.

Listing/setting the tabulator:

After TUSTEP has been initialized, the default tab stops
are set at positions 11, 21, 31, 41, 51, 61, 71.

T Lists the tabulator character and the tab stops.

T, X N1 N2 N3 ... Defines character X as the tabulator
character. X may be any character (except digits) chosen by
the user. Positions N1 N2 N3 etc. are defined as tab stops.

A tabulator character defined in this way is only effective
when data are entered after the instructions IE and
I , POS#N. Blanks will be inserted from the position of the
tabulator character to the next tabulator stop (this
corresponds to the tab key on a typewriter). If no tab stop
follows, the tabulator character will be replaced by a
single blank space.

The defined tab stops can also be jumped to with the
control command TAB (cf. page 218). If this is the only use
to be made of tabulators, the character X (but not the
comma) may be omitted in this instruction.

TUSTEP - 191 - Basics

T! Deletes tabulator character and tab stops

Tabulator characters and tab stops can also be defined when the
Editor is called up (see command #EDIT page 91). If the
tabulator character and/or tab stops are to be automatically
defined upon TUSTEP initialization, the appropriate Editor call
can be written in the start file (see page 50).

Function keys: listing, defining, deleting and activating
function keys:

In the Editor, a function is an abbreviated instruction having
the form FN (N = any number from 1 to 40). It designates an
instruction which can be defined by the user. Such an
abbreviation is called a function because the instruction for
which it stands can be executed by pressing the corresponding
function key.

The following functions have been predefined by TUSTEP:

F1=SB F7=ST,*
F2=SE F8=SB,*
F3=B F9=G-
F4=SA,* F10=G+
F5=S F11=M,1
F6=E #EXECUTE,<EDITOR> F12=M,2

However, these may be redefined by the user.

FN Activates function N.

If the keyboard being used is equipped with function keys,
a function can also be activated by pressing the respective
function key. If an instruction is already present on the
screen, it will be executed before the function.

FN=EDITOR INSTRUCTION Defines function N.

Up to 40 different functions may be defined. They are
numbered from 1 to 40, with the respective number being
given for N. At present, only one instruction may be given
for INSTRUCTION. This instruction is executed each time its
assigned function is activated. Each function retains its
definition until it is either deleted or redefined.

FN= Deletes function N.

F Lists all functions and their definitions.

If all functions cannot be listed on a single screen,
pressing the return key will display the next portion of
the list.

Functions can also be defined when the Editor is called up (cf.
#EDIT command, page 91). If functions are to be automatically
defined upon TUSTEP initialization, the appropriate Editor call
can be written in the start file (see page 50).

Basics - 192 - TUSTEP

Macros: executing/defining/deleting/listing

Due to limitations imposed by some operating systems,
Editor macros can only be executed under DOS, UNIX and VMS.

Execute macro NAME.

Executing an Editor macro is initiated by pressing a
certain key twice. The appropriate key depends on the
operating system and keyboard being used (cf. keyboard
tables starting on page 230). Then the name of the macro is
entered and sent to the computer. A quick key combination
can be used for macros whose names consist of a single
letter. Here a macro is initiated by pressing the
appropriate first key of a quick key combination, followed
by the desired letter of the macro - with no subsequent
pressing of the ENTER key to send this to the computer. In
some cases (e.g. under DOS) a quick key macro can also be
executed by entering the letter of the macro while the
"ALT" key" is held down.

When calling up the Editor (command #EDIT), the name of a
macro can be given for the specification MACRO. This macro
is then immediately executed after the Editor has been
started.

Y,NAME=MACRO INSTRUCTION Defines the macro NAME.

A macro instruction is either a control command or a
character string enclosed by a delimiter of the user às
choice (special character except for a comma). A
description of available control codes and their action
starts on page 218. A character string will be displayed on
screen starting at the current cursor position as if it
were entered there manually. Individual macro instructions
must be separated from each other by a comma. Each macro
instruction can be preceded by number (which is separated
from the instruction by a "*"), which specifies how many
times the macro is to be executed.

Y,NAME= Deletes macro NAME.

Y! Deletes all macros.

Y Lists all macros and their definitions.

If not all macros can fit into a single screen, the next
screen portion can be shown by pressing the RETURN key.

Macros can also be defined when the Editor is called up (see
command #EDIT page 91). If macros are to be automatically
defined upon TUSTEP initialization, the appropriate Editor call
can be written in the start file (see page 50).

TUSTEP - 193 - Basics

Character groups and string groups: defining, erasing and
listing

A character group or a string group is a group of individual
characters or strings which can be used in subsequent
instructions within character string comparison tables CSCT (cf.
page 210), character string search tables CSST (cf, page 208)
and character string pair tables CSPT (cf. page 210).

For defining character groups and string groups and for refering
to groups so defined, the group identifications ìN and íN are
available, where each N is to be replaced by a digit. Thus, a
maximum of 20 groups each can be defined simultaneously. Each
group definition is valid for all subsequent instructions until
it is redefined or deleted.

If the definition of a character group or a string group
contains a group identification, this identification will be
interpreted as an identification for the corresponding character
group (even if a string group has been defined with the same
identification). When used in all other instructions, a group
identification will be interpreted as the identification for the
corresponding string group, if a string group has already been
defined with this identification. Otherwise it will be
interpreted as the identification for the corresponding
character group.

XNC=CHARACTER Defines the character group XN. Either " ì" or " í"
must be given for X; the corresponding digit must be given
for N (e.g. ì2Z=AEIOU for defining a character group ì2

which is to contain the vowels a, e, i, o, u).

For a complete description of how to define character
groups, consult the section entitled "Parameter type V"
(starting on page 247).

XNC= Deletes the character group XN. " ì" or " í" must be given
for X; the corresponding digit must be given for N.

XNS=STRINGS Defines the string group XN. " ì" or " í" must be
given for X; the corresponding digit must be given for N

(e.g. ì2S=à%/à%\à%<à%:à%;à for defining the string group
ì2, which is to contain accent marks occurring in French
texts).

For a complete description of how to define strings groups,
consult the section entitled "Parameter type V" (starting
on page 247).

XNS= Deletes the string group XN. " ì" oder " í" must be given for
X, the corresponding digit must be given for N.

W Lists all defined character groups and string groups ("wild
card")

If all character groups and string groups cannot be
displayed on the screen, pressing the return key will
display the the next portion.

Basics - 194 - TUSTEP

Character groups and string groups can also be defined when the
editor is started (cf. #EDIT command page 91).

Executing TUSTEP commands:

The Editor can only execute editor instructions and Editor
macros. However, TUSTEP commands can be executed from the Editor
with the following Editor instruction. It exits the Editor
automatically and restarts the Editor after the command has been
executed.

E, COMM Executes the command COMM.

The command COMM must be delimited at its beginning and end
by a delimiter character of the user às choice. If more than
one command is to be executed, the commands must be
separated from each other by this delimiter. If a command
consists of more than one line (e.g. for commands with
parameters), each line must also be separated from one
another with this delimiter character. When choosing a
delimiter character, make sure that it does not occur in
the command itself.

Note: commands given here must always be given in their
complete form. When using commands followed by data (e.g.
parameters), this data must also be given, including the
final *EOF.

If the character string < EDITOR> occurs is specified in the
command COMM, this character string (including the pointed
brackets) will be replaced by the name of the EDITOR file.
Similarly, the character string < FILE > will be replaced by
the defined file name and the character string < SEGMENT>
will be replaced by the defined segment name. The names for
file and segment can be defined by using the name
instruction N (cf. page 186).

Displaying and repeating previous instructions:

The instructions described below can be used to display
previously used instructions on the screen. These instructions
(except for those displayed with the command GG) can be modified
or left unchanged before they are executed again.

The buffer will contain the 20 most recently used instructions
which
- have the correct syntax,
- consist of more characters than the instruction itself, and
- differ from the previously given instruction.
These stored instructions can be displayed on the screen with
the following instructions:

GG Displays the 20 most recently stored instructions

G Displays the most recently stored instruction

TUSTEP - 195 - Basics

G- Displays the instruction stored prior to the last
instruction which has been listed with G, G- or G+. If none
of the instructions G, G- or G+ have been given since the
last instruction (except of course the instructions G, G-
und G+), this will list the most recently stored
instruction.

G+ Displays the instruction stored after the last instruction
which has been listed with G, G- or G+. If none of the
instructions G, G- or G+ have been given since the last
instruction (except of course the instructions G, G- and
G+), this will list the most recently stored instruction.

The instructions G+ and G- can thus be used to scroll forwards
and backwards through the list of stored instructions. It is
recommended to assign each of these instructions to a function
key.

An instruction listed with G- or G+ is ready to be executed
once again. However, if it is not to be executed and the
user merely wishes to scroll through the list of
instructions using G- oder G+, the instruction just
displayed must be either overwritten or deleted before the
next instruction can be shown. This can be avoided by
defining the instructions G- and G+ as functions (see page
191) and assigning them to two function keys. Please note
that only a single function can be defined for each of the
two instructions. In the standard TUSTEP setup, the
functions F9 and F10 have been defined as G- and G+,
respectively. If a different function is to be defined with
G- or G+, the functions F9 or F10 must first be redefined.
If the instruction G- or G+ have been assigned to a
function key, pressing this function key will not execute
the instruction listed on screen (as opposed to all other
function keys), but the instruction that has been assigned
to the function key (i.e. the instruction G- or G+). This
spares the user the trouble of erasing the instruction last
displayed with G, G- or G+.

In addition to the 20 most recent instructions, the most recent
organizational instruction (except L) and the most recent
extended instruction which start with the same letter are also
stored. These stored instructions can be displayed again on the
screen with the following instructions, where any modifications
can be made before they are executed once again.

GE Displays the most recent organizational or extended
instruction which starts with the letter E. The
corresponding letter is to be given for E.

If an instruction is to be executed which has been defined as a
function in a similar form, it can be displayed on screen with
the following instruction, where it can be modified and then
executed:

GN Displays the instruction which has been defined as function
FN. The number of the corresponding function must be given
for N.

Basics - 196 - TUSTEP

If the definition of a function, character group, string group
or parameter is to be changed, and has already been defined in a
similar form, it can be displayed on screen with the following
commands, where it can then be modified.

GFN Displays the definition of function FN. The number of the
corresponding function must be given for N (e.g. GF2).

GXNC Displays the definition of the character group XN. Either
" ì" or " í" must be given for X, and the corresponding digit
must be given for N. (z.B. Gì2C).

GXNS Displays the definition of the string group XN. Either " ì"
or " í" must be given for X, and the corresponding digit
must be given for N. (e.g. Gì2S).

GPN, XXX Displays the definition of the parameter PN, XXX. The
corresponding digit must be given for N, and the
corresponding identification must be given for XXX. (e.g.
GP2, ZV3).

TUSTEP - 197 - Basics

Extended instructions:

Searching and showing

SB, RAN, LIMI , CSST Searches for the records of a range which
fulfill the conditions LIMI , CSST and shows the data
beginning with each record found.

SA, RAN, LIMI , CSST Searches for the records of a range which
fulfill the conditions LIMI , CSST and shows the data around
each record found.

ST, RAN, LIMI , CSST Searches for the records of a range which
fulfill the conditions LIMI , CSST and shows the data up to
each record found.

SO, RAN, LIMI , CSST Searches for the records of a range which
fulfill the conditions LIMI , CSST and shows only the records
found.

S, RAN, LIMI , CSST Searches for the records of a range which
fulfill the conditions LIMI , CSST and shows each record
according to the most recent of the four instruction
described above which has been given. If none of these
instructions has been given yet, S, RAN, LIMI , CSST has the
same effect as SA, RAN, LIMI , CSST.

After giving these Show instructions, the following
responses are possible:

return key: continues searching and showing in the same
direction.

W Continue search. Do not display found records but only
show the number of found character strings as well as
the number of records involved when the search is
completed.

SR Continues reverse searching and showing (i.e. towards
the beginning of the file).

SF Continues forward searching and showing (i.e. towards
the end of the file).

+ Interrupts search and scrolls forward; continued
pressing of the return key results in a scroll towards
the end of the file (not possible after SO).

- Interrupts search and scrolls backward; continued
pressing of the return key results in a scroll towards
the beginning of the file (not possible after SO).

new instruction: Interrupts the search. In this case, as
is true for the entries + and -, the instruction S (or
one of the instructions SR and SF) may be used to
continue searching and showing from the position of the
interruption, provided that the editor has not been
ended or that a new file has not been edited in the
meantime using the instruction V.

If in these Show instructions the range RAN is given in the
form (POS, POS), the first position may be higher than the
second; in this case, the given range is searched

Basics - 198 - TUSTEP

backwards. If the range RAN is given in the form POS, it is
searched forward beginning with this record position.

Inserting:

II, TEXT, RAN: COL, LIMI , CSST Inserts the character string TEXT in
every record of the range RAN which fulfills the conditions
LIMI , CSST.

The character string TEXT must be delimited at its
beginning and its end by a delimiter of the user às choice.
This delimiter character must not occur in the character
string itself. Coding of the character string TEXT follows
the same rules which apply to data (cf. "Character codes",
page 176).

: COL may be omitted. In this case, the character string
TEXT will be inserted at the end of each record. If the
value N is given for COL, the character string will be
inserted starting at the position N of each record (i.e.
the characters from position N up to the end of the record
are moved to the right). If + N is given, the character
string is inserted after the character position N (counting
the characters from the beginning of the record). If - N is
given, the characters are counted from the end of the
record and the character string is inserted in front of the
respective character position N.

If the value N1- N2 is given for COL, the character string
in the columns N1 to N2 is replaced by the character string
TEXT. The characters from column N2 up to the end of the
record are moved to the left if the character string TEXT

is shorter than the character string it has replaced, or to
the right if it is longer. If only the character string in
column N is to be replaced, the value N- N must be given.
(Giving N only would insert the character string TEXT at
position N instead of replacing the character N.)

IB, RAN1, RAN2, LIMI , CSST Inserts the records of the range RAN1

before each record of the ran RAN2 which fulfills the
conditions LIMI , CSST.

IA, RAN1, RAN2, LIMI , CSST Inserts the records of the range RAN1

after each record of the ran RAN2 which fulfills the
conditions LIMI , CSST.

When these instructions are executed, each record which
fulfills the conditions will be displayed. At the same
time, the user is asked whether insertion should be carried
out. One of the following responses may be given:

return key: The insertion is executed and the next record
which fulfills the conditions is searched.

Y The record is inserted and insertion is interrupted.
N The record is not inserted, but the next record which

fulfills the conditions is searched.

TUSTEP - 199 - Basics

C The record is inserted and all following records which
fulfill the conditions are inserted with no further
user consultation.

new instruction: Insertion is interrupted, with no
insertion ocurring in/before/after the current record.
In this case, as is true for the response Y, the
instruction I may be used later to continue insertion
starting at the position of interruption, provided that
the editor has not been ended or that a new file has
not been edited in the meantime.

Deleting:

D!, RAN, LIMI , CSST Deletes specific records of a range.

Each record that fulfills the conditions LIMI , CSST will be
displayed. At the same time, the user will be asked whether
the record should be deleted. One of the following
responses may be given:

return key: The record is deleted and the next one is
searched.

Y The record is deleted and deletion is interrupted.
N The record is not deleted, but the next one is

searched.
C The record is deleted and all following records which

fulfill the conditions are deleted with no further user
consultation.

new instruction: Deletion is interrupted; the current
record is not deleted. In this case, as is true for the
response Y, the instruction D may be used later to
continue deletion starting at the position of
interruption, provided that the editor has not been
ended or that a new file has not been edited in the
meantime using the instruction V.

Copying:

C, RAN, POS, LIMI , CSST Copies specific records of a range.

C, FILE , RAN, POS, LIMI , CSST Copying specific records from a range
of another file.

C, DATEI, SEGMENT, POS, LIMI , CSST Copies specific records from a
segment of another file.

Every record fulfilling the conditions LIMI , CSST will be
displayed. At the same time, the user will be asked whether
the record should be copied. One of the following responses
may be given:

return key: The record is copied and the next record is
searched.

Y The record is copied and copying is interrupted.
N The record is not copied, but the next record is

searched.

Basics - 200 - TUSTEP

C The record is copied and all following records which
fulfill the conditions are copied with no further user
consultation.

new instruction: Copying is interrupted, without copying
the current record. In this case, as is true for the
response Y, the instruction C may be used later to
continue copying starting at the position of
interruption, provided that the editor has not been
ended or that a new file has not been edited in the
meantime using the instruction V.

The records will be copied into the editor file starting
with record number POS (if a record with the record number
POS does not yet exist), or after the record number POS (if
there is already a record with record number POS). If the
records are to be copied to the end of the file, POS may be
omitted. In text mode, the first new record copied at the
end of the file is given the number n.1, where n is one
page number greater than that of the file às last record.

Renumbering (moving) records

R, RAN, POS, LIMI , CSST Renumbers (moves) specific records of a
range).

Every record which fulfills the conditions LIMI , CSST will
be displayed. At the same time, the user will be asked
whether the record should be moved. One of the following
responses can be given:

return key: The record is moved and the next record is
searched.

Y The record is moved and moving is interrupted.
N The record is not moved, but the next record is

searched.
C The record is moved and all following records which

fulfill the conditions are moved with no further user
consultation.

new instruction: Moving is interrupted and the current
record is not moved. In this case, as is true for the
response Y, the instruction R may be used later to
continue moving starting at the position of
interruption, provided that the editor has not been
ended or that a new file has not been edited in the
meantime using the instruction V.

The records will be moved and renumbered so that they will
start with record number POS (if a record with the record
number POS does not yet exist), or after the record number
POS (if there is already a record with record number POS).
If the records are to be moved to the end of the file, POS

may be omitted. In text mode, the first new record moved to
the end of the file is given the number n.1, where n is one
page number greater than that of the file às last record.

TUSTEP - 201 - Basics

Exchanging (replacing) character strings:

X, RAN, LIMI , CSPT Exchanges the character strings CSPT in a
range.

Before a character string is replaced, the record will be
displayed in both its original version and its version
after replacement. At the same time, the user is asked
whether replacement should be carried out. One of the
following responses can be given:

return key: The character string is replaced and the next
record is searched.

Y The character string is replaced and replacement is
then interrupted.

N The character is not replaced, but the next record to
be replaced is searched.

C The character string is replaced and all following
records are replaced with no further user consultation.

YF The character string is replaced. Any other character
strings in the rest of the actual record will not be
replaced, and the search for further character strings
to be replaced will continue with the following record.

NF The character string is not replaced, but the search
for further character strings to be replaced will
continue in the following record.

CF The character string is replaced and all other
character strings in the current record will be
replaced with no further user consultation. User
consultation is resumed starting with the next record
containing character strings to be replaced.

new instruction: Replacement is interrupted and the
character string in the current record is not replaced.
In this case, as is true for the response Y, the
instruction X may be used later to continue replacing
starting at the position of interruption, provided that
the editor has not been ended or that a new file has
not been edited in the meantime with the instruction V.

Basics - 202 - TUSTEP

Search instructions for structured data

With the help of the extended instructions Search and Show (cf.
page 197), records which contain certain character strings can
be searched. The records thus found are displayed either in
their respective context (i.e. surrounding records, instruction
SA), or only the found records are displayed (instruction SO).
Since the records are displayed with their record numbers and
unaltered text, any necessary corrections can be made.

When employing the search instructions described in this chapter
(which correspond to database queries), the search conditions
and the display format must first be defined with the
appropriate instructions. Search conditions and display format
can be defined by a combination of parameters.

For search condition the following can be defined:
- which records are to form a logical entity (e.g. a

bibliographical entry), which will be referred to in the
following as a text unit,

- which text parts of a certain text unit must contain a given
character string in order for the search condition to be
fulfilled, and

- which character strings (e.g. accent marks) are to be
eliminated in these text parts or replaced by other character
strings prior to checking whether a given character string is
present.

For the show format, the following can be defined:
- which text parts of the text unit are to be shown,
- which character strings (e.g. heading markers) in these text

parts are to be eliminated or replaced by others,
- at what points (e.g. for every heading) is a new line to be

started for screen output.

If a text unit fulfills the search conditions, it will be
displayed on screen with no record number (and no surrounding
text) in accordance with the given show format. The data shown
cannot be corrected in the show format. If corrections are to be
made in the data, they must be called up with the respective
editor instruction (e.g. the instruction SB,*).

All paramaters which belong to a search condition and a show
format comprise a parameter group. Up to 9 parameter groups may
be defined at the same time. They are named P1 to P9.

Defining and deleting parameters: general instructions

An instruction for defining a parameter has the syntax:

PN, XXX=CSCT| CSST| CSPT

With this instruction, the parameter with the identification xxx
is defined for the parameter group PN. The corresponding digit
is to be given for N and the corresponding parameter
identification is to be given for XXX. Depending on the
parameter being defined, either a character string comparison

TUSTEP - 203 - Basics

table CSCT (see page 210), a character string search table CSST

(see page 208) or a character string pair table CSPT (see page
210) must be given in place of CSCT| CSCT| CSPT.

The definition of a parameter remains in effect until it is
replaced by a new definition or deleted. An instruction for
deleting parameters has the syntax:

PN, XXX=

With this instruction, the parameter with the identification XXX

will be deleted from the parameter group PN. This instruction
differs from the definition instruction only in that
CSCT| CSST| CSPT| is omitted after the equals sign.

Defining parameters for the search condition

Organizing records into a text unit

In case each input record already contains a complete text
unit, the following two parameters should not be defined.
Otherwise, the parameters AA and/or AE can be used to
organize more records into a text unit.

PN, AA=CSCT Character strings placed at the beginning of a
record which mark the start of a text unit.

PN, AE=CSCT Character strigs placed at the end of a record
which mark the end of a text unit.

Selecting text units using search conditions:

A search condition consisting of up to 9 partial conditions
may be defined for each parameter group. For each text
part, a text part, which is marked by beginning and end
markers, can first be selected from the text unit. After
making any necessary character string replacements in this
text part, it can then be checked to see if it contains one
of the given character strings. If such a character string
is found, the partial condition is fulfilled; otherwise, it
is not fulfilled.

In order for a search condition to be fulfilled (only in
this case will the text unit be shown), all partial
conditions must be fulfilled. This corresponds to a logical
AND. A present, a connection with a logical OR can only be
made by giving more than one character string for a partial
condition. Additional logical connections are not yet
possible.

PN, AVM=CSST Character strings marking the beginning of the
text part for the partial condition M (M = 1 to 9). If the
text unit does not contain any of the given character
strings, no text part will be selected; the partial
condition is not fulfilled in this case. If this parameter
is not defined, the text part starts at the beginning of
the text unit.

Basics - 204 - TUSTEP

PN, EVM=CSST Character strings marking the end of the text part
for the partial condition M (M = 1 to 9). If the text unit
(or that part of the text unit starting with the beginning
marker for each text part) does not contain any of the
given character strings, or if this parameter is not
defined, the text part ends at the end of the text unit.

PN, XVM=CSPT Pairs of character strings (and exception
strings). The first character string of a pair will be
replaced by the pair às second character string in the text
part for the partial condition M (M = 1 to 9).

PN, ZVM=CSST Character strings, of which at least one must
occur in the (modified) text part for the partial condition
M (M = 1 to 9).

Defining parameters for the show format

Selecting text parts for screen display:

If the complete text unit is to be shown, neither of the
first two parameters below need to be defined. Otherwise,
the parameters AZM and EZM (M = 1 to 9) can be used to
select up to 9 text parts from the text unit which are to
be displayed on the screen. The sequence of these text
parts will correspond to their number (M). Gaps may be left
in the numbering. The parameter XZM can be used to replace
character strings in each of the text parts before they are
displayed.

PN, AZM=CSST Character strings marking the beginning of the
text part M (M = 1 to 9). If the text unit does not contain
any of the given character strings, nothing will be
selected for the text part. If this parameter is not
defined, the text part starts at the beginning of the text
unit, provided that the corresponding parameter for the end
marker has been defined.

PN, EZM=CSST Character strings marking the end of the text part
M (M = 1 to 9). If the text unit (or that part of the text
unit starting with the beginning marker for the same text
part) does not contain any of the given character strings,
or if this parameter is not defined, the text part ends at
the end of the text unit.

PN, XZM=CSPT Pairs of character strings (and exception
strings). The first character string of a pair will be
replaced by the pair às second character string in the text
part M (M = 1 to 9).

TUSTEP - 205 - Basics

Line division for screen display:

The following three parameters can be used to indicate
where a new line is to be started for the screen display.

PN, ZA=CSST Character strings, before which a new line is to be
started (beginning of line).

PN, ZE=CSST Character strings, after which a new line is to be
started (end of line).

PN, ZW=CSST Character strings (not displayed) used to start a
new line.

Searching and showing

After the parameters have been defined, the actual search
can be carried out. Each of the following search
instructions uses the current parameter group. The current
parameter group is the one for which a parameter has been
last defined or deleted, or the one whose parameters have
been last shown with one of the instructions P or PN (N = 1
bis 9).

Q, RAN Searches the specified range for text units which
fulfill the search condition of the current parameter
group.

If the range RAN is given in the form (POS, POS), the first
position may be greater than the second; in this case a
reverse search is conducted in the given range.

Q, POS Search starts at the specified record position for text
units which fulfill the search condition of the current
parameter group.

QB Searches from the beginning of the file for text units
which fulfill the search condition of the current parameter
group.

QE Searches from the end of the file for text units which
fulfill the search condition of the current parameter
group.

After giving these search instructions, the following
entries are possible:

return key: continues searching in the same direction.

W Continue search without displaying found text units;
the number of found text units are to be displayed
after the search is completed.

QR continue search backwards (i.e. towards the beginning
of the file).

QF continue search forwards (i.e. toward the end of the
file).

Basics - 206 - TUSTEP

new instruction: interrupts the search. In this case, the
instruction Q (or one of the instructions QR und QF)
can be given later to continue the search from the
point of interruption, provided that the Editor has not
been ended or that a new file has not been edited in
the meantime using the instruction V.

Listing, deleting and copying parameters

P displays on screen the parameters for each parameter group,
starting with the current parameter group. This instruction
can thus be used to determine which parameter group is
presently current.

If the parameters for a single parameter group cannot fit
into a single screen, the next portion of parameters can be
displayed by pressing the return key. Otherwise, pressing
the return key will display the parameters for the next
parameter group.

PN displays on screen the parameters of the parameter group N.
The corresponding group number is to be given for N.

If there is not enough room on the screen for all
parameters, the next portion can be displayed by pressing
the return key.

PN= deletes all parameters of the parameter group N.

For a description of how to delete individual parameters of
a parameter group, see page 203 above).

PN1=PN2 deletes all parameters of parameter group N1 and then
copies all parameters of parameter group N2 to parameter
group N1.

Note:

Parameters can also be defined when the Editor is started. (see
command #EDIT, page 91). If parameters are to be defined
automatically upon TUSTEP initialization, the appropriate Editor
call can be written in the start file (see page 50).

TUSTEP - 207 - Basics

Syntax used for defining a file range RAN or a record position
POS

a) Program mode:

RAN: POS | (POS, POS) | (POS#N) | ([C] /)

POS: REF | REF+N | REF - N | +N | - N

REF: L | [L] /D | *

b) Text mode:

RAN: POS | (POS, POS) | (POS#N) | ([P].) | ([[P.] L] /)

POS: REF | REF+N | REF - N | +N | - N

REF: [P.] L | [[P.] L] /D | *

The abbreviations and characters (in both program mode and text
mode) have the following meanings: * record position of the most

recently edited record

REF+N Nth record after record position REF

REF- N Nth record before record position REF

+N Nth record from the beginning of the file

- N Nth record from the end of the file

(POS1, POS2) Range of a file starting with record position POS1

and ending with record position POS2

(POS#N) Range of a file starting with record position POS and
containing a total of N records

L Record having the line number L and the distinction
number zero

L/D Record having the line number L and the distinction
number D

(L/) Range of a file containing all records having the line
number L, regardless of the distinction number

P. L Record having the page number P, line number L and
distinction number zero

P. L/D Record having the page number P, line number L and
distinction number D

(P.) Range of a file containing all records having the page
number P, regardless of the line number L and the
distinction number D

Basics - 208 - TUSTEP

(P. L/) Range of a file containing all records having the page
number P and the line number L, regardless of the
distinction number D

The specification RAN can be omitted if the range to be edited
contains all the records of the file.

Record definitions in square brackets [] are optional. In this
case, any omitted value is substitued by the corresponding value
in the record position * (i.e the current record). Exception:
the second position value in the specification RAN when given in
the form (POS, POS); here the first record position is used as a
substitute for any omitted values.

The distinction number must always be written with leading
zeros, whereas trailing zeros may be omitted (2/3 is equivalent
to 2/30).

Limiting action to certain columns LIMI :

LIMI may be omitted. If so, the search for the character string
given for CSST and the replacement of character strings given
for CSPT will be carried out for the entire record. If the
search or replacement action is to be carried out only for
certain columns of each record, the following specifications can
be given for LIMI :

 n1-n2 from column n1 to column n2
 n1+n2 n2 columns starting at column n1
 +n in the first n columns
 -n in the last n columns
 n in column n only

Character string search table CSST:

Character strings to be searched for are given here, as well as
any character strings that are to be skipped during a a search.
If character strings of different lengths are specified, the
longer character string is given priority. For character strings
of equal length, priority is assigned to the order in which they
were entered.

Character strings must be separated from each other by a
delimiter of the user às choice. The delimiter is the first
character of the character string CSST. A double limiter
separates character strings which are to be searched from those
which are to be ignored during a search. This double delimiter
can be employed as often as desired to switch between search
strings and exception strings. The last character of the
character string search table CSST must again be a delimiter.

If a character string contains letters, both uppercase and
lowercase forms will be searched for. The distinction between
uppercase and lowercase letters can be made by inserting "<" or

TUSTEP - 209 - Basics

">" before the each letter. Thus, "a" and "A" will be
interpreted as either an uppercase or lowercase a, whereas "<a"
and "<A" will be interpreted as an uppercase a; ">a" and ">A"
will be interpreted as a lowercase a. To represent the
characters "<" and ">" themselves, they must be given as "<<"
and ">>".

In addition to single characters, a character string may also
contain one of the following identifications for character
groups. These are used to represent groups of characters.

 >* all lowercase letters of the 7-bit and 8-bit TUSTEP
character set

 <* all uppercase letters of the 7-bit and 8-bit TUSTEP
character set

 >/ all digits of the 7-bit and 8-bit TUSTEP character set
 </ all letters of the 7-bit- and 8-bit TUSTEP character set
 >% all characters of the 7-bit TUSTEP character set
 <% all characters of the 7-bit and 8-bit TUSTEP character

set

In addition to these predefined group identifications for
character groups, the group identification (ìN or íN, N = digit)
of a user-defined character group or string group (cf. page 127)
may also be given instead of a character. If both a character
group and a string group have been defined for a group
identification, the string group has priority.

A frequency condition may be given in a character string which
is effective for the character which directly follows it:

 ><n the character must occur at least n times
 <>n the character may occur up to n times
 ><0 te character may be missing
 <>0 the character may occur any number of times

In this case, an integer from 1 to 9 may be given for "n". For
"><0" and "<>0", the zero may be omitted if no digit follows.
Thus, "<>0>/" has the same effect as "<>>/" and stands for "any
number of digits". The frequency conditions "><n" and "><0" may
be combined with "<>n" and "<>0". For example, "x><<> y" means
that between x and y the blank may be missing, or that any
number of blanks may be located between x and z.

In addition to frequency conditions, references and surroundings
conditions can also be given. For a complete description of
" CSST" specifications for group identifications, consult the
chapter entitled "Parameters" (starting on page 241 ff.); " CSST"
corresponds to the character string search table described for
parameter type IX.

Examples:
1. The character string "xyz" is to be searched and each record

in which it occurs is to be shown with its surrounding
records: SA,,,- XYZ-

2. Every record with a # in column 1 is to be shown: SO,, 1, / #/

Basics - 210 - TUSTEP

3. The character string "und" is to be searched, but the
character strings "round" and "undefined" are to be ignored
in the search: SO,,,/und//round/undefined//

Character string comparison table CSCT:

Data given for a character string comparison table are specified
with the same syntax used for a character string search table.
However, frequency conditions and surroundings conditions are
not allowed.

For a complete description of the specifications possible for a
character string comparison table, consult the chapter entitled
"Parameters" (starting on page 241); " CSCT" corresponds to the
character string comparison table described for parameter type
VIII.

Character string pairs CSPT:

Here the user specifies character strings in pairs; the first
character string is the one to be searched for and then replaced
by the pair às second character string, the character
substitution string. In addition, any character strings that are
to be skipped during replacement may be given as (exception
character strings).

Character search strings are described in the section "Character
string search table CSST". The characters of the substitution
character string are inserted in the text as upper and lower
case letters as entered.

Search and replacement character strings may be of different
length. They are separated from each other by a delimiter of the
user às choice. The delimiter is the first character of the
character string pair table CSPT. Two successive delimiters are
used to separate character string pairs from exception strings.
The last character of a character string pair table CSPT must
also be a delimiter.

For a complete description of the permissible specifications for
" CSPT" please consult the chapter "Parameters" (starting on page
241); " CSPT" corresponds to the character string pair table
described for parameter type X.

Examples:
1. The character string "xyz" is to be replaced by "yy":

R,,,;xyz;yy;
2. "x" is to be deleted, and "y" is to be replaced by "x" unless

there is a blank after y: R,,,/x//y/x//y //

TUSTEP - 211 - Basics

Adjusting the Editor to screen display (options)

The Editor às default color/gray level settings have been
configured in such a way to be compatible with as many screen
types as possible. Yet due to the diversity of screen types and
their settings, the display on some screens may be
unsatisfactory or even unusable. For this reason, TUSTEP
provides the user with the option of choosing his own settings
for the monitor às colors / gray levels.

The Editor assumes a screen size of 24 lines à 80 characters per
line, a typical standard for many screens in use today. To fully
exploit the possibilities of larger screens, TUSTEP also lets
the user define his own screen settings.

The cursor size can also be altered by the user; different
cursor sizes can be selected for the insert mode and replacement
mode. In addition, the cursor can be eliminated in its blinking
form (e.g. if blinking is undesired). Here the color/gray level
setting should be adjusted to make sure that the cursor position
remains visible.

These various settings (hereafter referred to as options) are
described below. Each setting remains in effect until the TUSTEP
session is ended with the command #RESET. However, the option
instruction (see below) can be used to save these current
settings in coded form to file. They can then be reactivated
with the DEFINITION specification used in the command for
calling up the editor. They then remain in effect until altered
or the TUSTEP session is ended.

Basics - 212 - TUSTEP

Automatic setting of options

If user options are to be automatically set whenever TUSTEP is
initialized, the following specifications should be written in
the start file (called *TUSTEP.INI):

#EDIT,DEFINITIONS=*
O=00501904 17 7E 1E 67 37 3E 17 7E 1E 67 6E 01 02 00 ...
*EOF

The above record with the options (beginning with "O=") is
incomplete and only serves to demonstrate how options can be
defined. This record is not entered by itself but instead
written to the file with the following instruction:

O, POS Enters currently set options at the record position POS.
If a record having the number POS already exists, the
instruction will be rejected.

If further alterations have been made to these settings and they
are to be used for subsequent TUSTEP sessions, the options must
be updated in the file with the following instruction. This
instruction must also be used instead of the one listed above if
the option is to be written to a record position that already
exists.

O!, POS Enters the currently set options at record position POS.
Any existing record having the record number POS will be
overwritten.

In addition to the settings already mentioned, options can also
be used to specify whether
- the insert mode or the replace mode is to be set (cf. control

commands TGL_INS, SET_INS and SET_REP on page 221).
- the delete mode or backspace mode is to be set (cf. control

commands TGL_DEL and SET_DEL on page 223).

Other definitions besides those used for options may also be set
when calling up the Editor (cf. command #EDIT Seite 91f).

If TUSTEP is to be used with a number of screens which require
different display settings, it is usually not advisable to have
options defined automatically with the start file. In this case,
a separate Editor call and its defined options for each screen
type can be saved in its own file, or even better, in its own
segment of a segment file. After TUSTEP is started, the desired
file or segment file can be executed with the command #EXECUTE
(see page 97). This procedure can also be used to continue a
TUSTEP session at another monitor which requires different
settings. But if the new settings vary only to a "minimal"
degree, it may be easier to set them manually after starting the
Editor.

TUSTEP - 213 - Basics

Setting attributes for colors / gray levels

The key combination CTRL+F (press the "f" key while holding down
the CTRL key) activates the screen menu for setting screen
colors / gray levels. The screen displayed will be similar to
that shown below.

Attr data 17 normal 7E cursor 1E emphasized 67 marked
Attr message line 37 normal 3E emphasized
Attr command line 17 normal 7E cursor 1E emphasized
Attr status line 67 normal 6E emphasized

 Select field to change with cursor up/down/left/right
 Select color by entering a two-character code given below
 Exit with ENTER

00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 F1
02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2
03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 F3
04 14 24 34 44 54 64 74 84 94 A4 B4 C4 D4 E4 F4
05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5
06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6
07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7
08 18 28 38 48 58 68 78 88 98 A8 B8 C8 D8 E8 F8
09 19 29 39 49 59 69 79 89 99 A9 B9 C9 D9 E9 F9
0A 1A 2A 3A 4A 5A 6A 7A 8A 9A AA BA CA DA EA FA
0B 1B 2B 3B 4B 5B 6B 7B 8B 9B AB BB CB DB EB FB
0C 1C 2C 3C 4C 5C 6C 7C 8C 9C AC BC CC DC EC FC
0D 1D 2D 3D 4D 5D 6D 7D 8D 9D AD BD CD DD ED FD
0E 1E 2E 3E 4E 5E 6E 7E 8E 9E AE BE CE DE EE FE
0F 1F 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF

The cursor is initally located in the first entry field in the
top line of the screen. The lower portion of the screen features
256 character pairs, which in the most favorable constellation
(e.g. on an IBM-compatible PC with color display) will each
display a different attribute (color and contrasting background
and foreground). The two-character code representing the desired
attributes can be entered in the entry field in the upper part
of the screen (these are the fields which already contain such
codes).

The cursor keys are used to move between entry fields (either
forwards or backwards). Once a new code is entered in a field,
the accompanying text will display the new setting. After making
all desired alterations, the new settings must be confirmed by
pressing the ENTER key. Then the previous screen display will
appear. However, the new settings are not activated until a new
screen is displayed (e.g. after a show instruction).

Basics - 214 - TUSTEP

The attributes for the various displays used in the Editor can
be set in the following entry fields:

Attr data = appearance of text on screen

- normal: for normal text (for display and input)
- cursor: for the character at the cursor position
- emphasized: for representing emphasized text (e.g. found

character strings)
- marked: for marked text

Attr message line = message display

- normal: for questions and prompts
- emphasized: for error messages

Attr command line = display of entered instructions

- normal: for entry prompt
- cursor: for the character at the cursor position
- emphasized: for entered characters

Attr status line = status line display

- normal: for regular displays
- emphasized: for warnings

Caution:

The settings should be selected so that the words "normal",
"cursor", "emphasized" and "marked" in the first four lines
remain visible at all points of the screen in which they occur
in the above illustration. Otherwise, working with the Editor
will be practically impossible, since certain data or error
messages cannot be seen on screen.

For this reason the default values should be first used when
working with the Editor at a certain monitor for the first time.
Afterwards, settings may be changed if so desired.

In some cases, pressing CTRL+F results in distorted (or blank)
commentary and entry fields. Here a legible character pair in
the lower half of the screen should be entered without
previously moving the cursor with any cursor keys. Confirm the
entry by pressing the ENTER key and press CTRL+F once again.

TUSTEP - 215 - Basics

Setting line length and number of lines per screen

The key combination CTRL+L (press the "l" key while holding down
the CTRL key) activates the menu for line settings. The screen
display will be similar to that shown below::

 Width of standard screen (only 0 or 80 or 132): 0

 Number of characters (80-160) per line: 80

 Number of lines (24-60) of the screen: 25

 Line width (40-160) for data input in mode P: 80

 Line width (40-160) for data input in mode T: 80

 Width of region for wrapping (0-160) in mode P: 30

 Width of region for wrapping (0-160) in mode T: 30

 Select value to change with cursor up/down
 Define value by entering the number of characters/lines
 Exit with ENTER

Lines in which a new setting is desired can be accessed by using
the "cursor up" or "cursor down" keys. To change the setting,
enter the desired number. If a line cannot be accessed because
it is jumped over, this means that this value cannot be altered
for the current monitor type. After making any desired changes,
confirm choices by pressing the ENTER key. The previous screen
display will then appear (assuming the new settings allow for
this).

The following settings can be made:

Width of standard screen:

This setting applies only to monitors (e.g. VT100) that can be
switched between an 80 and 132 characters/line display. The
setting "0" means that such a switch should not be made while
working with the Editor.

Basics - 216 - TUSTEP

Number of characters / lines:

This setting determines the number of characters per line and
the total number of lines to be shown on screen with the Editor.
Caution: Specify no more characters or lines than can actually
be displayed on the monitor. The Editor has no way of knowing if
the values entered are too large. The results of specifying such
values are unpredictable. Data may be lost when edited with an
improper screen setting.

Line width for data input:

This setting limits (for both program mode and text mode) the
number of characters that can be inserted into a single line.
The upper limit for both settings is the line length specified
for "Number of characters per line".

Width of region for wrapping:

This setting is used to specify the number of characters (for
both program mode and text mode) within which a blank space is
to be searched for whenever a record cannot fit into a single
line onscreen. The search is conducted from the end of the
record, with a continuation line being started at the found
blank space. If no blank space is found within the specified
wrap region, the line will be written to its fullest extent and
a continuation line will be started. To show that the line break
does not include a blank space in the data, an accent grave " ̀"
will be added to the end of broken line.

TUSTEP - 217 - Basics

Setting the size and speed of the cursor

The key combination CTRL+G (press the "g" key while holding down
the CTRL key) activates the cursor control menu. The screen
display will be similar to that shown below.

 Cursor type for REPLACE mode: 1

 Cursor type for INSERT mode: 2

 Cursor speed (in both modes): 0

 Select REPLACE/INSERT/SPEED with cursor up/down
 Select cursor type/speed with cursor left/right
 Exit with ENTER

The line for making the setting can be reached with the keys
"cursor up" and "cursor down". Settings are changed by pressing
the keys "cursor right" and "cursor left", which lists the
possible settings in succession. After the desired settings have
been made, they are confirmed by pressing the ENTER key. The
previous screen display will then appear.

The following settings are possible:

Cursor type:

Determines the shape of the cursor for replace mode (overwrite)
and for insert mode The resulting cursor size will be shown for
each setting.

Cursor speed:

Determines cursor speed when a cursor key is pressed for a
lengthier period of time. A zero means that no particular speed
will be set. Otherwise, a larger number results in a faster
cursor speed.

Limitation:

Although the possible settings are identical, only IBM
compatibles will achieve the corresponding results. For
terminals (VT100) and terminal emulations (e.g. Kermit, XTERM)
the above settings are partially or completely ineffective.

Basics - 218 - TUSTEP

Editor control commands

The Editor features various control commands for altering data
on screen. Each of these control commands has been assigned an
abbreviated form. The result of each control command is
described below, followed by a list of tables for the most
common keyboard types featuring the respective key or key
combination assigned to each control command.

The effects of all control commands are limited to the screen
display. Changes thus made on screen are not recorded to file
until sent to the computer by pressing ENTER, CR or a function
key.

Control commands can also be activated in Editor macros by using
their abbreviations. Some control commands are reserved
exclusively for Editor macros and are thus not listed in the
following tables.

Description

The character generated by the space bar is called a "blank".
Blanks at the end of a line are not sent to the computer.

"Text" refers to the text in the line where the cursor is
located. The left-hand part of the line reserved for the record
number is not considered part of the "text".

A "word" is a character string delimited by blanks, the
beginning of the "text" or the end of the "text". Blanks (or a
number of blanks) are considered to be part of the preceding
"word".

Notes

If onscreen changes have been made for a file opened for read
only, the appropriate error message will appear. Any subsequent
instructions not be accepted until these onscreen changes have
been either erased with the control command CLEAR or declared
invalid with the control command IGNORE.

If the execution of a control command requires data to be
removed from the screen which have been altered but not yet sent
to the computer with ENTER, CR or a function key, the control

TUSTEP - 219 - Basics

command will be rejected. This, however, does not apply to
control commands meant to erase data.

If a line is to be inserted onscreen with, for example, the
INS_LINE control command, this means that all following lines
have to be shifted one line downwards and that the bottom line
(and any lines belonging to the record involved) must be erased
from the screen display. If this bottom onscreen record (to
which the last screen line belongs) has been altered but not yet
sent to the computer, this alteration will be lost. In this
case, the control command INS_LINE will therefore be rejected.

The same applies to lines shifted downwards when entering data
in the insert mode. If altered data have to be shifted beyond
the screen display, data input will be blocked.

Cursor movement

CUR_UP Cursor up

Cursor moves one line up

CUR_DN Cursor down

Cursor moves one line down

CUR_RI Cursor right

Cursor moves one character to the right

CUR_LE Cursor left

Cursor moves one character to the left

HOME "Home / Skip to command line"

When located in the instruction line (bottom line
of the screen), cursor jumpt to the beginning of
the instruction; if already at the beginning of the
instructin, or not in the instruction line at all,
the cursor will jump to the start of the first
"text" line. If it is already located there, it
will jump to the beginning of the instruction line.

CMD_LINE "Jump to command line"

Cursor jumps to the beginning of the instruction
(command) line.

LF Line feed: "Skip to next start of text"

Cursor jumps to the next line at the start of the
"text".

Basics - 220 - TUSTEP

CR Carriage return: "End of input" / "Line feed"

- when entering data (e.g. after instruction IE):
CR CR has the same effect as LF, i.e. the cursor
jumps to the next line. In this case, ENTER must
be used to send data to the computer.

- otherwise: data and/or instruction will be sent
to the computer (as if ENTER has been given).

TAB "Skip to next tabulator"

Cursor jumps to the next tab stop.

Note: tab stops can be defined with the instruction
T (see page 190).

SKP_BEG "Skip to start of text"

Cursor jumps to the beginning of the "text". If it
is already located there, it will jump to the
beginning of the "text" in the preceding line.

SKP_END "Skip to end of text"

Cursor jumps to the end of the "text". If it is
already located there, it will jump to the end of
the "text" in the following line.

SKP_WORD "Skip to next word / end of text"

same as SKP_RI

SKP_RI "Skip to next word / end of text"

Cursor jumps to the beginning of the next "word".
If the cursor is located at the last word of a
line, it will jump to the end of the "text". If the
cursor is already located there, it will jump to
the beginning of the first "word" in the following
line.

SKP_LE "Skip to preceding word"

Cursor jumps to the beginning of the preceding
"word". If located at or before the first "word" of
a line, the cursor will jump to the end of the last
"word" in the preceding line.

JMP_DN "Jump to next emphasized field"

Cursor jumps to the beginning of the next
emphasized text position (e.g. following the show
instruction SO)

TUSTEP - 221 - Basics

JMP_UP "Jump to preceding emphasized field"

Cursor jumps to the end of the previous emphasized
text position (e.g. following the show instruction
SO)

Scrolling

SHW_DN "Show next screen of text"

Scrolls forwards, starting with the record in which
the cursor is located. If the cursor is located in
the instruction line: starting with the record
which follows the last record presently on screen.
Empty screen: starting with the record which
follows the record corresponding to the current
*-position.

If any changes have been made to screen, these must
be first sent to the computer (e.g. with CR or
ENTER) or declared invalid (with IGNORE).

SHW_UP "Show preceding screen of text"

Scrolls backwards, starting with the record in
which the cursor is located. If the cursor is
located in the instruction line: starting with the
record which precedes the first record shown
onscreen. Empty screen: starting with the record
which precedes the record corresponding to the
current *-position.

If any changes have been made to screen, these must
be first sent to the computer (e.g. with CR or
ENTER), declared invalid (with IGNORE), or deleted
(with CLEAR).

Inserting

TGL_INS "Toggle insert mode / replace mode"

Toggles between replace mode and insert mode. In
replace mode existing characters will be
overwritten; in insert mode, newly-entered
characters will be inserted at the current cursor
position, will any previous characters between the
cursor position and the end of the line being
shifted to the right. If there is not enought room
in the line for the existing words, the characters
will be shifted word-by-word to the following
(continuation) line.

Basics - 222 - TUSTEP

SET_INS "Set insert mode"

Activates insert mode (cf. TGL_INS).

SET_REP "Set replace mode"

Activates replace mode (cf. TGL_INS).

INS_LINE "Insert line"

The current line and all following lines are
shifted one line down, thus creating an empty line
in which text can be subsequently entered. If
possible, the newly created line will assigned its
own record number automatically.

SPLIT "Split line"

Splits the current line at the cursor position. All
lines following the current line are moved down one
line. The "text" to the left of the cursor will
remain in the current line; the rest of the "text"
is shifted to the newly created line that follows.
If the cursor is located at a blank, the blank will
not be shifted to the following line. If the cursor
is located after the last character of the line,
SPLIT has the same effect as INS_LINE, except that
the empty line will be inserted after the current
line. If possible, the newly created line will be
assigned its own record number automatically.

DUP_LINE "Duplicate line"

Makes a duplicate (copy) of the current line. All
lines following the current line are moved down one
line. The "text" of the current line is copied to
the newly created line. If possible, the newly
created line will be assigned its own record
number.

DATE_1 "Write date as xx.xx.xx"

Inserts the date in the form xx.xx.xx (e.g.
01.12.90) at the current cursor position onscreen.

DATE_2 "Write date as xx. xxx. xxxx"

Inserts the date in der form xx. xxx. xxxx (e.g.
12. Jan. 1990) at the current cursor position
onscreen.

DATE_3 "Write date as xx. xxxxxxxx xxxx"

Inserts the date in the form xx. xxxxxxxx xxxx
(e.g. 12. January 1990) at the current cursor
position onscreen.

TUSTEP - 223 - Basics

PAGE_NR "Write current page number"

Inserts the current page number (i.e. the page
number appearing after "*=" in the instruction
line) at the cursor position onscreen.

PAGE_NR_INC "Write current page number incremented by 1"

Inserts a page number one greater than the current
page number (i.e. that appearing after "*=" in the
instruction line) at the cursor position onscreen.

PAGE_NR_DEC "Write current page number decremented by 1"

Inserts a page number one less than the current
page number (i.e. that appearing after "*=" in the
instruction line) at the cursor position onscreen.

Deleting

DEL Delete: "Delete character in line"

Deletes the character at the current cursor
position and moves all following characters in the
line one position to the left.

BSP Backspace: "Delete character in line"

Deletes the character to the left of the current
cursor position and moves all following characters
in the line one position to the left. The cursor
also moves one position to the left.

TGL_DEL "Toggle delete mode / backspace mode"

Toggles between delete mode and backspace mode. In
delete mode DEL has the same effect as described
for DEL above; in backspace mode DEL is the same as
BSP.

SET_DEL "Set delete mode"

Activates delete mode (cf. TGL_DEL).

DEL_BEG "Delete to start of text"

Deletes the "text" to the left of the current
cursor position and moves the remaining "text" to
the beginning of the line. The cursor is then
positioned at the first "text" character in the
line.

Basics - 224 - TUSTEP

UND_BEG "Undo (= Insert text deleted with) DEL_BEG"

Inserts the characters last deleted with DEL_BEG in
front of the current cursor position. All following
characters in the line will be moved to the right.
The cursor is also shifted and appears after the
inserted characters.

DEL_END "Delete to end of text"

Deletes all characters from the current cursor
position to the end of the "text".

UND_END "Undo (= Insert text deleted with) DEL_END"

Inserts the characters last deleted with DEL_END
plus a blank space in front of the current cursor
position. All following characters in the line are
shifted to the right. The cursor is not shifted and
will be located at the begin of the inserted
characters.

DEL_WORD "Delete to next word / end of text"

Deletes the rest of the "word" starting at the
current cursor position (or the entire "word" if
the cursor is located at the beginning of the
"word"). The following characters will be moved the
corresponding number of characters to the left.

UND_WORD "Undo (= Insert text deleted with) DEL_WORD"

Inserts the characters last deleted with DEL_WORD
in front of the current cursor position. All
following characters in the line will be moved to
the right. The cursor remains at its original
position at the beginning of the inserted
characters.

DEL_LINE "Delete line"

Deletes the current line (only on screen if this
deletes a complete record and its record number)
and moves all following lines one line up.

Note: If a complete record and its record number is
deleted from the screen, this does not delete (or
change) this record in the file (cf. example on
page 182). If the entire record is to be deleted
from the file, DEL_REC should be used instead.

UND_LINE "Undo (= Insert line deleted with) DEL_LINE"

The current line and all following lines are moved
one line down. The line last deleted with DEL_LINE
is inserted into the newly created line. If

TUSTEP - 225 - Basics

possible, the newly created line will be assigned
its own record number automatically.

DEL_REC "Delete record"

Deletes the record to which the current line
belongs.

UND_REC "Undo (= Insert record deleted with) DEL_REC"

The current line and all following lines are moved
down as required. The "text" of the record last
deleted with DEL_REC is inserted into the newly
created line(s). If possible, the new record will
be assigned its own record number automatically.

CLEAR "Clear screen"

Clears the screen. This command is useful for
canceling changes made onscreen, or for entering an
instruction which is longer than a single
instruction line.

Note: If onscreen changes have been made for a file
opened only for reading, the appropriate error
message will appear. Any subsequent instructions
will not be accepted until these onscreen changes
have been either erased with the control command
CLEAR or declared invalid with the control command
IGNORE.

Marking, copying, deleting, inserting and searching text

MRK_INI "Initialize marking of text"

Defines the beginning of marked text.

Note: once MRK_INI has been invoked, the cursor
must then be positioned at the end of the text to
be marked. Marking is then completed with one of
the following control commands. The screen may not
be changed in the meantime. If any action is taken
that alters the screen content, MRK_IGN will be
ignored automatically.

MRK_IGN "Ignore marking of text"

Cancels marking begun with MRK_INI.

MRK_REP "Copy marked text to the buffer"

Copies marked text to the buffer. Any text already
present in the buffer will be erased.

Basics - 226 - TUSTEP

MRK_BEG "Insert marked text at beginning of buffer"

Copies marked text to the buffer. If the buffer
already contains text, the newly marked text will
be inserted at the beginning of the old text.

MRK_END "Append marked text at end of buffer"

Copies marked text to the buffer. If the buffer
already contains text, the newly marked text will
be inserted at the end of the old text.

MRK_INS "Insert buffer contents into the text"

Inserts buffer text at the current cursor position.
All following characters in the line will be
shifted to the right. The cursor will also be
shifted to the right, appearing after the inserted
characters.

MRK_DEL_REP "Delete marked text, copy it to the buffer"

As in MRK_REP, except that that the text marked
onscreen is deleted.

MRK_DEL_BEG "Delete marked text, insert it at beginning of
buffer"

As in MRK_BEG, except that the text marked onscreen
is deleted.

MRK_DEL_END "Delete marked text, append it at end of buffer"

As in MRK_END, except that the text marked onscreen
is deleted.

MRK_DEL_INS "Replace marked text with buffer contents"

Deletes marked text without saving it to the
buffer; marked text is replaced by the buffer text
at this position.

MRK_DEL_DEL "Delete marked text without saving it"

Deletes marked text without saving it to the
buffer.

MRK_FND "Find next occurance of marked text"

Begins a line-by-line search starting at the cursor
position for onscreen text which matches the marked
text. The cursor will be positioned at the
beginning of the found text. No distinction is made
between uppercase and lowercase letters.

If the search is to be repeated for the same text,
this control command can be invoked without having
to remark the text.

TUSTEP - 227 - Basics

MRK_DEL_FND "Delete marked text and find next occurance"

As in MRK_FND, except that the previously marked
text is deleted from the screen.

Running number

RD_NUM "Read and set current number"

Read a numerical sequence starting at the cursor
position and saves it as a running number.

DEC_NUM "Decrement current number by 1"

Reduces the running number by 1.

INC_NUM "Increment current number by 1"

Increases the running number by 1.

WR_NUM "Write current number"

Writes the current number (i.e. any number read
with RD_NUM and/or increased or decreased with
INC_NUM or DEC_NUM, respectively) at the current
cursor position onscreen.

Further control commands

ENTER "End of input"

Signals end of input and sends data / instruction
to the computer.

JOIN "Join lines"

Appends the current line to the following line and
any continuation lines involved.

RESHOW "Reshow screen"

Displays the last screen display. This can be
useful for undoing any undesired screen displays.

Caution: the reshown screen display is identical to
the last screen displayed. Any alterations made
onscreen in the meantime will not be accounted for.

REFRESH "Refresh screen"

Restores screen contents disrupted or destroyed by
system messages, disturbances in the data transfer
line, etc.

Basics - 228 - TUSTEP

CANCEL "Cancel input" / "terminate editor"

- when entering data (e.g. after the instruction
IE): terminates data input, any data onscreen
will be ignored.

- otherwise: terminates Editor. Any changes made
onscreen, such as a new instruction, that have
not been sent to the computer (e.g. with ENTER)
will be ignored.

WAIT "Wait until striking any key"

Step processing of the Editor macro is interrupted
and user input is expected. Pressing the space bar
continues the execution of the macro. Pressing any
other key will skip over the remaining control
commands in the Editor macro.

IGNORE "Ignore modifications"

Any alterations made onscreen will be ignored.

HELP "call online help"

Activates the online help program (see command
#HELP page 109).

Function key End of input. Data and/or instruction will be sent
to the computer. The instruction defined for a
function will be executed.

The use of the function keys is described in more
detail on page 191.

TUSTEP - 229 - Basics

Key combinations for control commands

Control commands are executed by using the keys in the number
pad and the keys in the cursor pad. Key combinations with the
number pad involve the digits 0-9, . , - + * / ã
and + . In the DOS version, the ESC key can be used instead of
/ and +.

A key combination starting with Ctrl (e.g. Ctrl+A) requires that
- the Ctrl key is first held down and
- the key following the plus sign is then pressed (e.g. the

letter a or A for the combination Ctrl+A).
- the Ctrl key is then released,
- and any other keys involved in the combination (e.g. after

Ctrl+K) are pressed and released separately.
For all other key combinations, keys must be pressed in the
given order and then released.

Basics - 230 - TUSTEP

UNIX and VMS: VT100 keyboard

Name Keys Function Alternate keys

CUR_UP z Cursor up

CUR_DN ¥ Cursor down

CUR_LE tu Cursor left

CUR_RI ¡¢ Cursor right

BSP BS Backspace CTRL+H

DEL Del Delete

TAB Tab Skip to next tabulator CTRL+I

LF LF Skip to next start of text CTRL+J

ENTER ENTER End of input

CR Return End of input CTRL+M

SKP_BEG PF2 Skip to start of text

SKP_WORD PF3 Skip to next word / end of text

SKP_END PF4 Skip to end of text

SHW_DN , Show next screen of text

SHW_UP - Show preceding screen of text

HOME . Home / Skip to command line

TGL_INS PF1 ENTER Toggle insert / replace mode CTRL+A

SPLIT PF1 Return Split line

DEL_BEG PF1 PF2 Delete to start of text

DEL_WORD PF1 PF3 Delete to next word / end of text

DEL_END PF1 PF4 Delete to end of text

DEL_LINE PF1 - Delete line

INS_LINE PF1 , Insert line

CLEAR PF1 . Clear screen

DEL_REC PF1 Del Delete record

REFRESH PF1 PF1 ENTER Refresh screen CTRL+W

JOIN PF1 PF1 Return Join lines

UND_BEG PF1 PF1 PF2 Insert text deleted with DEL_BEG

UND_WORD PF1 PF1 PF3 Insert text deleted with DEL_WORD

UND_END PF1 PF1 PF4 Insert text deleted with DEL_END

UND_LINE PF1 PF1 - Insert line deleted with DEL_LINE

DUP_LINE PF1 PF1 , Duplicate line

RESHOW PF1 PF1 . Reshow screen CTRL+R

UND_REC PF1 PF1 DEL Insert record deleted with DEL_REC

TUSTEP - 231 - Basics

UNIX and VMS: VT100-Tastatur (continued)

Name Keys Function

CTRL+P Display cursor position

TGL_DEL CTRL+B Toggle delete / backspace mode

CANCEL CTRL+Z Cancel input, terminate editor

MRK_INI CTRL+K Return Initialize marking of text

MRK_BEG CTRL+K PF2 Copy marked text to buffer begin

MRK_REP CTRL+K PF3 Copy marked text to buffer

MRK_END CTRL+K PF4 Copy marked text to buffer end

MRK_INS CTRL+K Enter Insert buffer contents into text

MRK_IGN CTRL+K Del Return Ignore marking of text

MRK_DEL_BEG CTRL+K Del PF2 Move marked text to buffer begin

MRK_DEL_REP CTRL+K Del PF3 Move marked text to buffer

MRK_DEL_END CTRL+K Del PF4 Move marked text to buffer end

MRK_DEL_INS CTRL+K Del Enter Replace marked text with buffer

MRK_DEL_DEL CTRL+K Del Del Delete marked text

HELP CTRL+V Call online help

INTRPT CTRL+C Interrupt program

CTRL+G Set cursor type

CTRL+F Set color attributes

CTRL+L Set length of line

PF1+a - PF1+z Invoke macro: a to z

PF1 PF1 name Return Invoke macro: name

0 - 9 Function keys: F10, F1 to F9

PF1 0 - PF1 9 Function keys: F20, F11 to F19

PF1 PF1 0 - PF1 PF1 9 Function keys: F30, F21 to F29

Basics - 232 - TUSTEP

DOS: AT keyboard - English layout

Name Keys Function Alternate keys

CUR_UP z Cursor up

CUR_DN ¥ Cursor down

CUR_LE tu Cursor left

CUR_RI ¡¢ Cursor right

BSP Bsp Backspace Ctrl+H

DEL Del Delete

TAB Tab Skip to next tabulator Ctrl+I

LF Ctrl+Return Skip to next start of text Ctrl+J

CR Return End of input Ctrl+M

ENTER + End of input

SKP_BEG Home Skip to start of text

SKP_WORD - Skip to next word / end of text Ctrl+ ¡¢

SKP_END End Skip to end of text

SKP_RI - Skip to next word / end of text Ctrl+ ¡¢

SKP_LE Skip to preceding word Ctrl+ tu

SHW_DN PgDn Show next screen of text

SHW_UP PgUp Show preceding screen of text

HOME * Home / Skip to command line

TGL_INS Ins Toggle insert / replace mode Ctrl+A

SPLIT ESC Return Split line

DEL_BEG ESC Home Delete to start of text

DEL_WORD ESC - Delete to next word / end of text

DEL_END ESC End Delete to end of text

DEL_LINE ESC PgUp Delete line

INS_LINE ESC PgDn Insert line

CLEAR ESC * Clear screen Ctrl+C

DEL_REC ESC Del Delete record

REFRESH ESC ESC + Refresh screen Ctrl+W

JOIN ESC ESC Return Join lines

UND_BEG ESC ESC Home Insert text deleted with DEL_BEG

UND_WORD ESC ESC - Insert text deleted with DEL_WORD

UND_END ESC ESC End Insert text deleted with DEL_END

UND_LINE ESC ESC PgUp Insert line deleted with DEL_LINE

DUP_LINE ESC ESC PgDn Duplicate line

RESHOW ESC ESC * Reshow screen Ctrl+R

UND_REC ESC ESC DEL Insert record deleted with DEL_REC

TUSTEP - 233 - Basics

DOS: AT keyboard - English layout (continued)

Name Keys Function

JMP_UP Ctrl+ z Jump to next emphasized field

JMP_DN Ctrl+ ¥ Jump to prec. emphasized field

TGL_DEL Ctrl+B Toggle delete / backspace mode

CANCEL Ctrl+Z Cancel input, terminate editor

MRK_INI Ctrl+K Return Initialize marking of text

MRK_BEG Ctrl+K Home Copy marked text to buffer begin

MRK_REP Ctrl+K - Copy marked text to buffer

MRK_END Ctrl+K End Copy marked text to buffer end

MRK_INS Ctrl+K Enter Insert buffer contents into text

MRK_IGN Ctrl+K Del Return Ignore marking of text

MRK_DEL_BEG Ctrl+K Del Home Move marked text to buffer begin

MRK_DEL_REP Ctrl+K Del - Move marked text to buffer

MRK_DEL_END Ctrl+K Del End Move marked text to buffer end

MRK_DEL_INS Ctrl+K Del Enter Replace marked text with buffer

MRK_DEL_DEL Ctrl+K Del Del Delete marked text

HELP Ctrl+V Call online help

INTRPT Ctrl+C Interrupt program

Ctrl+G Set cursor type

Ctrl+F Set color attributes

Ctrl+L Set length of line

Alt a - Alt z Invoke macro: a to z

ESC ESC name Return Invoke macro: name

F1 - F10 Function keys: F1 to F10

Shift+F1 - Shift+F10 Function keys: F11 to F20

Ctrl+F1 - Ctrl+F10 Function keys: F21 to F30

Alt+F1 - Alt+F10 Function keys: F31 to F40

Basics - 234 - TUSTEP

DOS: MF keyboard - English layout

Name Keys Function Alternate keys

CUR_UP z Cursor up

CUR_DN ¥ Cursor down

CUR_LE tu Cursor left

CUR_RI ¡¢ Cursor right

BSP Bsp Backspace Ctrl+H

DEL Del Delete

TAB Tab Skip to next tabulator Ctrl+I

LF Ctrl+Return Skip to next start of text Ctrl+J

CR Return End of input Ctrl+M

ENTER Enter End of input

SKP_BEG Home Skip to start of text

SKP_WORD - Skip to next word / end of text Ctrl+ ¡¢

SKP_END End Skip to end of text

SKP_RI - Skip to next word / end of text Ctrl+ ¡¢

SKP_LE Skip to preceding word Ctrl+ tu

SHW_DN PgDn Show next screen of text

SHW_UP PgUp Show preceding screen of text

HOME * Home / Skip to command line

TGL_INS Ins Toggle insert / replace mode Ctrl+A

SPLIT / Return Split line

DEL_BEG / Home Delete to start of text

DEL_WORD / - Delete to next word / end of text

DEL_END / End Delete to end of text

DEL_LINE / PgUp Delete line

INS_LINE / PgDn Insert line

CLEAR / * Clear screen Ctrl+C

DEL_REC / Del Delete record

REFRESH / / + Refresh screen Ctrl+W

JOIN / / Return Join lines

UND_BEG / / Home Insert text deleted with DEL_BEG

UND_WORD / / - Insert text deleted with DEL_WORD

UND_END / / End Insert text deleted with DEL_END

UND_LINE / / PgUp Insert line deleted with DEL_LINE

DUP_LINE / / PgDn Duplicate line

RESHOW / / * Reshow screen Ctrl+R

UND_REC / / DEL Insert record deleted with DEL_REC

TUSTEP - 235 - Basics

DOS: MF keyboard - English layout (continued)

Name Keys Function

JMP_UP Ctrl+ z Jump to next emphasized field

JMP_DN Ctrl+ ¥ Jump to prec. emphasized field

TGL_DEL Ctrl+B Toggle delete / backspace mode

CANCEL Ctrl+Z Cancel input, terminate editor

MRK_INI Ctrl+K Return Initialize marking of text

MRK_BEG Ctrl+K Home Copy marked text to buffer begin

MRK_REP Ctrl+K - Copy marked text to buffer

MRK_END Ctrl+K End Copy marked text to buffer end

MRK_INS Ctrl+K Enter Insert buffer contents into text

MRK_IGN Ctrl+K Del Return Ignore marking of text

MRK_DEL_BEG Ctrl+K Del Home Move marked text to buffer begin

MRK_DEL_REP Ctrl+K Del - Move marked text to buffer

MRK_DEL_END Ctrl+K Del End Move marked text to buffer end

MRK_DEL_INS Ctrl+K Del Enter Replace marked text with buffer

MRK_DEL_DEL Ctrl+K Del Del Delete marked text

HELP Ctrl+V Call online help

INTRPT Ctrl+C Interrupt program

Ctrl+G Set cursor type

Ctrl+F Set color attributes

Ctrl+L Set length of line

Alt+a - Alt+z Invoke macro: a to z

/ / name Return Invoke macro: name

F1 - F10 Function keys: F1 to F10

Shift+F1 - Shift+F10 Function keys: F11 to F20

Ctrl+F1 - Ctrl+F10 Function keys: F21 to F30

Alt+F1 - Alt+F10 Function keys: F31 to F40

Basics - 236 - TUSTEP

DOS: AT keyboard - German layout

Name Keys Function Alternate keys

CUR_UP z Cursor up

CUR_DN ¥ Cursor down

CUR_LE tu Cursor left

CUR_RI ¡¢ Cursor right

BSP Bsp Backspace Strg+H

DEL Lösch Delete

TAB Tab Skip to next tabulator Strg+I

LF Strg+Return Skip to next start of text Strg+J

CR Return End of input Strg+M

ENTER + End of input

SKP_BEG Pos1 Skip to start of text

SKP_WORD - Skip to next word / end of text Strg+ ¡¢

SKP_END End Skip to end of text

SKP_RI - Skip to next word / end of text Strg+ ¡¢

SKP_LE Skip to preceding word Strg+ tu

SHW_DN Bild¥ Show next screen of text

SHW_UP Bildz Show preceding screen of text

HOME * Home / Skip to command line

TGL_INS Einfg Toggle insert / replace mode Strg+A

SPLIT E/L Return Split line

DEL_BEG E/L Pos1 Delete to start of text

DEL_WORD E/L - Delete to next word / end of text

DEL_END E/L End Delete to end of text

DEL_LINE E/L Bild z Delete line

INS_LINE E/L Bild ¥ Insert line

CLEAR E/L * Clear screen Strg+C

DEL_REC E/L Lösch Delete record

REFRESH E/L E/L Enter Refresh screen Strg+W

JOIN E/L E/L Return Join lines

UND_BEG E/L E/L Pos1 Insert text deleted with DEL_BEG

UND_WORD E/L E/L - Insert text deleted with DEL_WORD

UND_END E/L E/L End Insert text deleted with DEL_END

UND_LINE E/L E/L Bild z Insert line deleted with DEL_LINE

DUP_LINE E/L E/L Bild ¥ Duplicate line

RESHOW E/L E/L * Reshow screen Strg+R

UND_REC E/L E/L DEL Insert record deleted with DEL_REC

TUSTEP - 237 - Basics

DOS: AT keyboard - German layout (continued)

Name Keys Function

JMP_UP Strg+ z Jump to next emphasized field

JMP_DN Strg+ ¥ Jump to prec. emphasized field

TGL_DEL Strg+B Toggle delete / backspace mode

CANCEL Strg+Z Cancel input, terminate editor

MRK_INI Strg+K Return Initialize marking of text

MRK_BEG Strg+K Pos1 Copy marked text to buffer begin

MRK_REP Strg+K - Copy marked text to buffer

MRK_END Strg+K End Copy marked text to buffer end

MRK_INS Strg+K + Insert buffer contents into text

MRK_IGN Strg+K Lösch Return Ignore marking of text

MRK_DEL_BEG Strg+K Lösch Pos1 Move marked text to buffer begin

MRK_DEL_REP Strg+K Lösch - Move marked text to buffer

MRK_DEL_END Strg+K Lösch End Move marked text to buffer end

MRK_DEL_INS Strg+K Lösch + Replace marked text with buffer

MRK_DEL_DEL Strg+K Lösch Lösch Delete marked text

HELP Strg+V Call online help

INTRPT Strg+C Interrupt program

Strg+G Set cursor type

Strg+F Set color attributes

Strg+L Set length of line

Alt+a - Alt+z Invoke macro: a to z

E/L E/L name Return Invoke macro: name

F1 - F10 Function keys: F1 to F10

Shift+F1 - Shift+F10 Function keys: F11 to F20

Strg+F1 - Strg+F10 Function keys: F21 to F30

Alt+F1 - Alt+F10 Function keys: F31 to F40

Basics - 238 - TUSTEP

DOS: MF keyboard - German layout

Name Keys Function Alternate keys

CUR_UP z Cursor up

CUR_DN ¥ Cursor down

CUR_LE tu Cursor left

CUR_RI ¡¢ Cursor right

BSP Bsp Backspace Strg+H

DEL Entf Delete

TAB Tab Skip to next tabulator Strg+I

LF Strg+Return Skip to next start of text Strg+J

CR Return End of input Strg+M

ENTER Enter End of input

SKP_BEG Pos1 Skip to start of text

SKP_WORD - Skip to next word / end of text Strg+ ¡¢

SKP_END Ende Skip to end of text

SKP_RI - Skip to next word / end of text Strg+ ¡¢

SKP_LE Skip to preceding word Strg+ tu

SHW_DN Bild¥ Show next screen of text

SHW_UP Bildz Show preceding screen of text

HOME ã Home / Skip to command line

TGL_INS Einfg Toggle insert / replace mode Strg+A

SPLIT + Return Split line

DEL_BEG + Pos1 Delete to start of text

DEL_WORD + - Delete to next word / end of text

DEL_END + Ende Delete to end of text

DEL_LINE + Bild z Delete line

INS_LINE + Bild ¥ Insert line

CLEAR + ã Clear screen Strg+C

DEL_REC + Entf Delete record

REFRESH + + Enter Refresh screen Strg+W

JOIN + + Return Join lines

UND_BEG + + Pos1 Insert text deleted with DEL_BEG

UND_WORD + + - Insert text deleted with DEL_WORD

UND_END + + Ende Insert text deleted with DEL_END

UND_LINE + + Bild z Insert line deleted with DEL_LINE

DUP_LINE + + Bild ¥ Duplicate line

RESHOW + + ã Reshow screen Strg+R

UND_REC + + DEL Insert record deleted with DEL_REC

 - 239 -

DOS: MF keyboard - German layout (continued)

Name Keys Function

JMP_UP Strg+ z Jump to next emphasized field

JMP_DN Strg+ ¥ Jump to prec. emphasized field

TGL_DEL Strg+B Toggle delete / backspace mode

CANCEL Strg+Z Cancel input, terminate editor

MRK_INI Strg+K Return Initialize marking of text

MRK_BEG Strg+K Pos1 Copy marked text to buffer begin

MRK_REP Strg+K - Copy marked text to buffer

MRK_END Strg+K Ende Copy marked text to buffer end

MRK_INS Strg+K Enter Insert buffer contents into text

MRK_IGN Strg+K Entf Return Ignore marking of text

MRK_DEL_BEG Strg+K Entf Pos1 Move marked text to buffer begin

MRK_DEL_REP Strg+K Entf - Move marked text to buffer

MRK_DEL_END Strg+K Entf Ende Move marked text to buffer end

MRK_DEL_INS Strg+K Entf Enter Replace marked text with buffer

MRK_DEL_DEL Strg+K Entf Entf Delete marked text

HELP Strg+V Call online help

INTRPT Strg+C Interrupt program

Strg+G Set cursor type

Strg+F Set color attributes

Strg+L Set length of line

Alt+a - Alt+z Invoke macro: a to z

+ + name Return Invoke macro: name

F1 - F10 Function keys: F1 to F10

Shift+F1 - Shift+F10 Function keys: F11 to F20

Strg+F1 - Strg+F10 Function keys: F21 to F30

Alt+F1 - Alt+F10 Function keys: F31 to F40

Basics - 240 - TUSTEP

TUSTEP - 241 - Basics

 P a r a m e t e r s

Basics - 242 - TUSTEP

Survey:

 Introduction 243

I. Numerical values 246
II. Text parts 246
III. Text part comparison table 247
IV. Text part replacement table 247
V. Character strings and string groups . . . 247
VI. Character table 250
VII. Alphabetical sorting table 250
VIII. Character string comparison table 250
IX. Character string search table 252
X. Character string pair table 257
XI. Miscellenous 258

Selecting and eliminating text parts . . . 259

TUSTEP - 243 - Basics

Introduction

Parameters are used to describe in more detail the desired
effects of a TUSTEP program. Parameter functions are outlined in
the description of the individual programs.

Parameters can be interpreted according to either "old" or "new"
conventions. The old convention of interpreting parameters was
the one first used in TUSTEP and whose concept was based on the
punch card, then the standard medium for the input of data and
programs. The notation used here took into account the fact that
punch cards ordinarily did not distinguish between uppercase and
lowercase letters, and that umlauts were not capable of being
interpreted. The "new" method of interpreting parameters has
been designed with more modern input technology in mind; the
limitations imposed by the "old" method therefore no longer
apply. The command #PARAMETER (see page 154) can be used to
specify whether parameters are to be interpreted according to
the old or new convention.

The default value here is still the old parameter interpretation
- future versions of TUSTEP will use the new parameter
interpretation as the default value. It is therefore recommended
to specify in each command sequence which convention is to be
used for interpreting parameters with the command #PARAMETER. In
the following description of various parameter types, passages
which apply exclusively to either the old or new convention will
be marked accordingly.

Basics - 244 - TUSTEP

Parameter format

Column 1-3: parameter identification consisting of 1 to 3
characters, left-aligned. Parameters containing
blanks in columns 1 to 3 are treated as comments.
They may occur at any place.

 4-5: blank: parameter is evaluated.

 "+n": parameter is evaluated only if the selection
switch n (n = 1 to 7) has been set.

 " n": is the same as "+n"

 "-n": parameter is evaluated only if the selection
switch n (n = 1 to 7) has not been set.

 6-7: blank, or a right-aligned number (depending on the
respective program)

 8: blank

 9: blank normal case

 ":" if the information field in column 11 begins
with a blank (e.g. for parameter type VII)

 "=" if the information field refers to a
preceding parameter of the same type whose
information field is to be used for the
current parameter. Column 11-13 must contain
the parameter identification and column 16-17
must contain the number given in column 6-7
of the parameter being referred to.

 10: blank

 11-80: Information field. Trailing blanks in the parameter
information field will be ignored.

If a line às information field is too small for the parameter às
data, continuation lines (with the same parameter
identification) may be used. The continuation line for
parameters using delimiter characters must use the same
delimiter character. The delimiter in column 11 of a
continuation line and the one at the end of the preceding line
are interpreted as a single delimiter character. For better
readability, it is recommended to take advantage of this feature
by dividing lines in such a way that every information field
begins with a delimiter character (column 11) and also ends with
a delimiter character (last column used). However, if a
character string is continued into the next line, a delimiter
character may not be written at the end of the line or in column
11 of the following line. In this case, it should be remembered
that blanks at the end of a line will be ignored.

TUSTEP - 245 - Basics

Rules for uppercase and lowercase letters

a) for parameter types II to IV:

NEW: Uppercase and lowercase will be interpreted as such.

OLD: The characters "<" and ">" are interpreted as shift
characters for shifting to uppercase and lowercase letters,
respectively. Each shift character is effective until the
next shift character, or until the end of the paramter. The
letters following a shift character may be typed as either
uppercase or lower case. If no shift character is present
at the start of a string, all letters up to the first
occurance of a shift character will be converted to
lowercase letters. After "<" letters are read as uppercase
letters, after ">" as lowercase letters. "<<" and ">>" are
used to represent the characters "<" and ">", respectively.

b) for parameter types V to X:

Letters specified in the information field refer to the
respective uppercase or lowercase letter (i.e., it does not
matter whether the letter is entered as uppercase or lowercase).
If upper case letters are to be distinguished from lower case
letters, the respective letter has to be marked by a preceding
"<" or ">". Thus, "a" and "A" will be interpreted as either an
upper or lower case a, ">a" and ">A" will be interpreted as a
lower case a, "<a" and "<A" will be interpreted as an upper case
A. "<<" and ">>" are used to represent the characters "<" and
">", respectively.

c) for parameter type X:

For character search strings, the same applies as for parameter
type IX.

NEW: Uppercase and lowercase letters in replacement character
strings will be interpreted as such, unless a lowercase or
uppercase letter has been specifically requested with the
shift character ">" or "<".

OLD: Uppercase and lowercase letters in replacement character
strings will be interpreted as lowercase letters, unless
marked otherwise with a preceding "<" (for uppercase)
before each letter. Lowercase letters may be marked with a
">", but this has no real effect when letters are
interpreted.

Rules for the circumflex character

NEW: A circumflex "^" (entered as "^^") will be interpreted as a
normal character.

OLD: A circumflex "^" (entered as "^^") is regarded as a control
character and will be interpreted along the the character
immediately following it as a single character. (cf. the
tables 7-bit and 8-bit TUSTEP Character Sets on page 298f).

Basics - 246 - TUSTEP

When using "<" or ">" to mark a letter entered with "^",
please observe the proper sequence: e.g. ">^a" for a
lowercase "ä" ("^>a" would be interpreted as "]a").

Parameter type I: numerical values

Specified in the information field are numerical values which
are written as arabic numbers. Digits written directly one after
the other are interpreted as a single number. Individual numbers
may be separated by any character (excluding digits). Numerical
values must be entered in the sequence required by the
respective description; in this case, no numerical value may be
omitted. If fewer numbers are given than required by the
respective program, its default numerical values will be
inserted for the missing numerical values.

If one line is too small for the parameter às data, continuation
lines (having the same parameter identification) may be used. A
blank is always added at the end of each line.

For this parameter type, column 9 may only contain a blank, i.e.
reference cannot be made to a preceding parameter.

Parameter type II: text parts

Specified in the information field contains are text parts which
are separated from each other by a delimiter character of the
user às choice. The delimiter is the first character (column 11)
in the information field of the parameter. The last text part
must also be followed by a delimiter.

If fewer text parts are given than required by the respective
program, its default text parts will be inserted for the missing
text parts.

If one line is too small for the parameter às data, continuation
lines (with the same parameter identification and same delimiter
character, cf. page 244) may be used. If a text part is to be
continued in the next line, a "-" can be used as a hyphen,
provided that it has not been chosed as the delimiter character.
However, a "-" at the end of a line will only interpreted as a
hyphen if the next-to-last character is a letter and the
third-to-last character is not a control character ($, &, @, \,
#, %).

TUSTEP - 247 - Basics

Parameter type III: text part comparison table

Specified in the information field are text parts which are
separated from each other by a delimiter character of the user às
choice. The delimiter is the first character (column 11) in the
information field of the parameter. The last text part must also
be followed by a delimiter.

The significance of uppercase and lowercase letters in the
program can be obtained from the description for the respective
parameter. Character groups and string groups may not be
specified (see below).

If one line is too small for the parameter às data, continuation
lines (with the same parameter identification and same delimiter
character, cf. page 244) may be used.

Parameter type IV: text part replacement table

Specified in the information field are pairs of text parts whose
first text part is used for comparison with the text part to be
processed. Any matching text parts will be replaced by the
pair às second text part. The comparison text part and the
substitution text part may be of different length.

The text parts specified in the information field are separated
from each other by a delimiter of the user às choice. The
delimiter is the first character (column 11) in the information
field of the parameter. The last text part must also be followed
by a delimiter.

The significance of uppercase and lowercase letters in the
comparison text parts can be obtained from the description for
the relevant parameter. Character groups and string groups may
not be specified (see below).

If one line is too small for the parameter às data, continuation
lines (with the same parameter identification and same delimiter
character, cf. page 244) may be used.

Parameter card type V: character groups and string groups

A character group is a combination of single characters. Once
defined, a character group can be referred to by specifying its
group identification in subsequent parameters of the type VI to
X (for type X, only in character search strings) of the same
program. The characters of the specified character group will be
equally treated as substitutes for the group identification.

A string group is a combination of character strings. Once
defined, a string group can be referred to by giving its group
identification in subsequent parameters of the type IX and X
(for type X, only in character search strings) of the same
program. The character strings of the specified string group

Basics - 248 - TUSTEP

will be equally treated as a substitute for the group
identification.

The group identifications ">n" and "<n" are used to define
character groups and string groups, and to refer to groups so
defined, Here, "n" is represents a single digit, so that a
maximum of 20 groups may defined at one time. The definition of
a group remains in effect for all subsequent parameters until
the group is redefined (by the definition of either a character
group or of a string group).

Priority assignments in character groups and string groups

If the definition of a character group or a string group
contains a group identification, this will always be interpreted
as an identification for the corresponding character group (even
if a string group definition has used the same identification).
This also applies to parameter types VI to VIII. For parameter
types IX and X, a group identification will be interpreted as an
identification for the respective string group if this has
already been defined. Otherwise it will be interpreted as an
identification for the corresponding character group.

Predefined character groups

In addition to user-defined character groups, there are six
internally-defined character groups with the following character
group identifications:

 >* all lowercase letters of the 7-bit and 8-bit TUSTEP
character set

 <* all uppercase letters of the 7-bit and 8-bit TUSTEP
character set

 >/ all digits of the 7-bit and 8-bit TUSTEP character
set

 </ all letters of the 7-bit and 8-bit TUSTEP character set
 >% all characters of the 7-bit TUSTEP character set
 <% all characters of the 7-bit and 8-bit TUSTEP

character set

Defining character groups

The parameter identification for defining a character group
consists of the group identification in column 1 and 2, followed
by a "Z" written in column 3.

To be specified in the information field (starting with column
11, with no intervening spaces) are characters which are
assigned to the group to be defined. The identification of a
character group previously defined by the user or the
identification of an internally-defined character group may be
given in place of a character. The information field is
processed from left to right, with the characters being written
to the (originally empty) group. The character string "><"
causes the characters following it to be deleted from the group.
The character string "<>" may be used to cancel "><", i.e. the
following characters will be again be added to the group.

TUSTEP - 249 - Basics

Defining (character) string groups

The parameter identification for defining a string group
consists of the group identification in columns 1 and 2,
followed by an "S" in column 3.

To be specified in the information field are strings assigned to
the string group to be defined. A previously-defined character
group identification may be given instead of a single character
of a string.

The character strings given in the information field are
separated from each other by a delimiter character of the user às
choice. The delimiter is the first character (column 11) in the
information field of the parameter. The character string must
also followed by a delimiter.

Two kinds of character strings may be specified: "search
strings" and "exception strings" (= character search strings
which are to be ignored during a search). They are separated
from each other by two consecutive delimiters. Such double
delimiters can be used to switch between search strings and
exception strings as often as desired.

The texts are always scanned from left to right. If a string,
starting in the text at the current scan position, corresponds
to more than one search string, then the longer string is given
precedence in each case. For strings of equal length, priority
corresponds to the order in which they were given in the
parameter. If an exception string is found, this has the same
effect as if none of the characters in the string group had been
found.

Caution: Because of this search procedure, exception strings
included in a search string should start with a text identical
to the start of the text in the other string groups to be
searched (e.g. "/xy//xy*/", but not "/xy//*xy/"). Furthermore,
attention should be given to the order in which search strings
and exception strings of equal length are entered. Specifying,
for example, "/>*>*//xy/" will not achieve the desired result
because both character strings, ">*>*" and "xy", are two
characters long (">*" is regarded as one character since it
stands for a lowercase letter) steht), and that the check in the
text for any occurances of the character string "xy" will be
overridden by the search string ">*>*", since it has been
specified before the exception string "xy". To make sure that
the exception string will have an effect, the two strings should
be specified in the order: "//xy//>*>*/".

If one line is too small for the parameter às data, continuation
lines (with the same parameter identification and same delimiter
character, cf. page 244) may be used.

In order to avoid errors, the following is recommended:

If an exception string is to be given at the beginning of an
information field, it is possible to switch from search strings
to exception strings by using two consecutive delimiters at the
beginning of the information field.

Basics - 250 - TUSTEP

If an exception string is given at the end of a line, this line
should be ended with two consecutive delimiters placed at the
end of the information field, thereby switching from exception
strings to search strings.

Parameter type VI: character table

To be specified in the information field (starting with column
11, with no intervening spaces) are characters which are to be
entered into the table. Unless otherwise specified in the
respective parameter às description, characters may be given in
any order.

The identification of a previously defined character group may
be given in place of a character. The characters of the
specified character group will be treated as if they were all
located at the position occupied by the character group
identification.

Parameter type VII: sort alphabet table

The information field is interpreted in the same way as for a
character table. However, the given sequence of individual
characters is always significant. Their given sequence
determines the priority in which characters are sorted or
compared, i.e., the first character (or all the characters of
the character group given at the first character position) is
assigned the lowest priorty, the second character (or the
characters of the corresponding group) has the next higher
priority etc. Characters (and character groups) to be assigned
highest priority may be written after the character combination
"><". During sorting they would sorted at the end of the sort.
If less characters are specified than available in the entire
character set, any missing characters will be inserted according
to their priority in the standard sort order (see page 355).

Parameter type VIII: character string comparison table

To be specified in the information field are strings assigned to
the string group to be defined. A previously-defined character
group identification may be given instead of a single character
of a string.

The character strings given in the information field are
separated from each other by a delimiter character of the user às
choice. The delimiter is the first character (column 11) in the
information field of the parameter. The character string must
also followed by a delimiter.

TUSTEP - 251 - Basics

Two kinds of character strings may be specified: "search
strings" and "exception strings" (= character search strings;
they are separated from each other by a double delimiter
character. A double delimiter can therefore be used to switch
between search strings and exception strings as often as
desired.

Special features of parameter type VIIIa

Texts will only be checked as to whether they begin with one of
the given strings. If the text beginning is identical to more
than one search or exception strings, the longer string will be
given priority in each case. For strings of equal length, their
priority will respond to the order in which they were specified.
If (in accordance with the priority sequence described here) the
text matches an exception string, this has the same effect as if
none of the specified strings agreed with the beginnng of the
text.

Note: Attention should to be given to the order in which search
strings and exception strings of equal length are entered.
Specifying, for example, "/>*>*//xy/" will not achieve the
desired result because both character strings, ">*>*" and "xy",
are two characters long (">*" is regarded as one character since
it stands for a lowercase letter) and that the check in the text
for any occurances of the character string "xy" will be
overridden by the search string ">*>*", since it has been
specified before the exception string "xy". To make sure that
the exception string will have an effect, the two strings should
be specified in the order: "//xy//>*>*/".

Special features of parameter type VIIIb

Texts will only be checked as to whether they end with one of
the given strings. If the end of the text is identical to more
than one search or exception strings, the longer string will be
given priority in each case. For strings of equal length, their
priority will respond to the order in which they were specified.
If (in accordance with the priority sequence described here) the
text matches an exception string, this has the same effect as if
none of the specified strings agreed with the end of the text.
Note: Attention should be given to the order in which search
strings and exception strings of equal length are entered.
Specifying, for example, "/>*>*//xy/" will not achieve the
desired result because both character strings, ">*>*" and "xy",
are two characters long (">*" is regarded as one character since
it stands for a lowercase letter) steht), and that the check in
the text for any occurances of the character string "xy" will be
overridden by the search string ">*>*", since it has been
specified before the exception string "xy". To make sure that
the exception string will have an effect, the two strings should
be specified in the order: "//xy//>*>*/".

Basics - 252 - TUSTEP

Parameter type IX: character string search table

Entered in the information field are character strings which are
to be searched. In place of a single character, a predefined
identification for a character or string group may be specified.
In addition, a reference (pointer) can also be given, which
refers to other elements (see below) of the same character
string. Furthermore, frequency conditions may be added to
characters, character groups, string groups and references, and
ambient conditions for the character strings may also be
specified.

The character strings given in the information field are
separated from each other by a delimiter character of the user às
choice. The delimiter is the first character (column 11) in the
information field of the parameter. The character string must
also followed by a delimiter.

Two kinds of character strings may be specified: "search
strings" and "exception strings" (= character search strings
which are to be ignored during a search). They are separated
from each other by two consecutive delimiters. Such double
delimiters can be used to switch between search strings and
exception strings as often as desired.

The texts are always scanned from left to right. If a string,
starting in the text at the current scan position, corresponds
to more than one search string, then the longer string is given
precedence in each case. For strings of equal length, priority
corresponds to the order in which they were given in the
parameter. If an exception string is found during the search (in
accordance with the priority rules stated here), the
corresponding characters in the text will be skipped over. The
search in the text will then continue at the position following
the exception string. However, this does not apply to exception
strings specified in string groups; here the exception string is
only used to specify that other character strings given in the
same string group may be passed over and thus none of the search
strings specified in the string group will be found beyond the
current position in the text.

Caution: Based on these outlined procedures for searching the
text according to given character strings, a search of the text
"...01234..." for the string "/1234/01/" would find the string
"01" but not the string "1234". Reason: Although the string
"1234" is longer than the string "01", what is decisive here is
the fact that string "01" is further to the left in the text and
(since the search is carried out from left to right) is thus the
first string found. Similarly, a search of the text
"...01234..." for the string "/1234//01/" will first find the
exception string "01". The text search will then be continued at
the position that follows the string "01", thereby passing over
(i.e. no longer finding) the string. "1234". In addition,
attention should be given to the order in which search and
exception strings of equal length are given. Specifying, for
example, "/>*>*//xy/" will not achieve the desired result
because both character strings, ">*>*" and "xy", are two

TUSTEP - 253 - Basics

characters long (">*" is regarded as one character since it
stands for a lowercase letter) and that the check in the text
for any occurances of the character string "xy" will be
overridden by the search string ">*>*", since it has been
specified before the exception string "xy". To make sure that
the exception string will have an effect, the two strings should
be specified in the order: "//xy//>*>*/".

If one line is too small for the parameter às data, continuation
lines (with the same parameter identification and same delimiter
character, cf. page 244) may be used.

Characters, character group identifications, string group
identifications and references will be refered to in the
following as "elements" of the character search string. A
frequency condition preceding a character, a character group
identification, a string group identification or a reference is
considered to be part of the element.

Frequency conditions

><n If an element contains the frequency condition "><n", the
characters in the text to be searched which correspond to
the character (or to the given group identification or to
the given reference) specified in the element must occur at
least n times in direct succession. All n occurrences of
these characters will be assigned to this element.

"n" is a one-digit number and indicates the desired minimum
frequency. To indicate that the characters corresponding to
the element may be missing from the text entirely, n = 0
must be given. The digit "0" may be omitted if this does
not lead to any confusion (i.e. unless a digit directly
follows this frequency condition).

If the minimum frequency condition is not specified, "1" is
assumed as the value for the minimum frequency.

<>n Maximum frequency condition: If an element contains the
frequency condition "<>n", and if in the text to be
searched the characters which correspond to the characters
(or to the given group identification or to the given
reference) specified in the element occur more than once in
direct succession, up to n occurrences of these characters
will be assigned to this element.

"n" is a one-digit number and indicates the desired maximum
frequency. To indicate that the characters corresponding to
the element may occur in the text in direct succession any
number of times, n = 0 must be given. This digit "0" may be
omitted if this does not lead to any confusion (i.e. unless
a digit directly follows this frequency condition).

If the maximum frequency condition is not given, the
maximum frequency will be same as the minumum frequency
indicated with "><n", or, if the minimum frequency "><0" or
no minimum frequency has been given, 1 will be assumed as
the value for the maximum frequency.

Basics - 254 - TUSTEP

Only one frequency condition may be given at a time for the
minimum frequency and for the maximum frequency of a character,
a group identification or a reference. However, the frequency
conditions ><n and <>n may be combined; e.g. "><<> " means: no
blank or any number of blanks. If the same value, other than 0,
is to be specified for the minimum and the maximum frequency,
only the minimum frequency needs to be specified. If different
values are specified for n, the order in which they are given
has the following meaning:

If the minimum frequency condition precedes the maximum
frequency condition (or if only the maximum frequency condition
has been given), a scan of the text attempts as soon as possible
to procede from the element containing the frequency condition
to the next element of the search string in order to find a
string in the text which matches the search string and which
also matches the elements of the search string which immediately
follow (up to an element for which the specified minimum
frequency differs from the specified maximum frequency).

If the maximum frequency condition precedes the minimum
frequency condition, a scan of the text will attempt to validate
characters of the text as matching the element containing the
frequency conditions until the specified maximum frequency is
reached.

As described above, the longest string corresponding to a search
string is given precedence when the text is scanned. If the
minimum frequency "><n" is specified for an element, for the
calculation of the length of the string, this element is assumed
to consist of n characters.

Examples:

"/A<>*B/" is equivalent to "/A<>0*B/" and defines a search
string consisting of "a", any number of "*" (but at least one)
and one "b", in this order.

"/A><<>*B/" is equivalent to "/A><0<>0*B/" and defines a search
string consisting of "a", any number of "*" (which also may be
missing) and one "b", in this order.

Assume a text contains the string "1230000". For the search
string "><1<>5>/0" (and for the equivalent search string
"<>5>/0") the corresponding text string would be "1230", whereas
for the the search string "<>5><1>/0", the corresponding string
would be "123000".

Assume a text contains the string "abxdxyzxyz.". For the search
strings "><2<>4</XYZ", "><2<>5</XYZ" etc. up to "><2<>9</XYZ",
the corresponding text string would be "abxdxyz", whereas
nothing in this text would correspond to the search strings
"<>9><2</XYZ" and "<>8><2</XYZ". For the search string
"<>7><2</XYZ" the corresponding text string would be
"abxdxyzxyz", for the search string "<>6><2</XYZ" the
corresponding text string would be "bxdxyzxyz", for the search
string "<>5><2</XYZ" the corresponding text string would be
"xdxyzxyz", and for the search string "<>4><2</XYZ" the
coresponding text string would be "abxdxyz".

TUSTEP - 255 - Basics

References (in search strings)

>=nn Refers to the nn-th element of the search string: the
characters in the text to be scanned which correspond to
the nn-th element of the search string must also occur at
this location in the text. A distinction is made between
lower case and upper case letters. It is only possible to
refer to an element located to the left of the reference.

For "nn", a two-digit number (numbers less than 10 with a
leading zero) is to be entered.

>:nn is the same as >=nn, yet with no distinction being made
between uppercase and lowercase letters.

<=nn Refers to the nn-last element of the search string: the
characters in the text to be scanned which correspond to
the nn-last element of the search string (as counted from
the end of the string) must also occur at this location in
the text. A distinction will be made between upper case and
lower case letters. It is only possible to refer to an
element located to the left of the reference.

For "nn", a two-digit number (numbers less than 10 with a
leading zero) is to be entered.

<:nn is the same as <=nn, yet with no distinction being made
between uppercase and lowercase letters.

Examples:

"|</>/>=01|" is equivalent to "|</>/<=03|" and indicates a
search string consisting of three characters and containing two
identical letters to the right and left of a digit (e.g a2a, but
not A2a or a2A); it must consist of any letter ("</"), a digit
(">/") and an additional character which is identical to the
first (">=01") or the third-to-the-last ("<=03") character of
the string in the text, i.e. the character must be the same as
the one preceding the digit.

"|<>>/:>=01|" indicates a search string containing two identical
strings of digits of any length to the right and left of the
colon (e.g. 123:123, but also 23:23 in the string 123:234). The
string consists of any number ("<>") of digits (">/"), a colon
(":") and the same string of digits as the one preceding the
colon (">=01"), i.e. the string consists of the same characters
which correspond to the first element of the search string in
the text to be scanned.

Ambient conditions

Ambient conditions make it possible to specify the surroundings
in which a string must occur in the text to be scanned. A search
string for which ambient conditions have been specified consists
of a "core string" (which corresponds to a search string with no
ambient conditions) and a left and/or right "margin string". In
the text to be scanned, the string corresponding to the left
margin string must directly precede the text string
corresponding to the core string. The string corresponding to

Basics - 256 - TUSTEP

the right margin string must directly follow the text string
corresponding to the core string.

The left margin string is specified in front of the core string
and is separated from the core string by the "delimiter for the
left margin", which is described below; the right margin string
is specified after the string and is separated from the core
string by the "delimiter for the right margin", which is
described below.

Margin strings are specified according to the same rules which
apply to search strings without margin conditions; for
references, it should be taken into account that when elements
are counted, the elements of the margin strings will be counted
as well; however, it is only possible to refer to elements of
the core string.

><x delimiter for the left margin

<>x delimiter for the right margin

For "x", the delimiter chosen for the entire table (= the
character entered in column 11 of the parameter line) must
be used.

Examples:

" >/><|123|123<>|>/ 123|" defines a string search table with
which the number 123 is to be searched, and where, for example,
the numerical sequence 123 in the number 1234 is to be ignored
in the search. The chosen delimiter used here is "|". Thus, the
delimiter for the left margin is the string "><|" and for the
right margin the string "<>|". For the specification "any
number" the internally-defined string having the string group
identification ">/" is used. The two delimiter characters
entered in succession at the beginning of the condition " " are
used to switch to exception strings. The first exception string
is ">/><|123", stipulating that 123 is to be excepted from the
search if another digit is located immediately to its left. The
next delimiter is followed by the second exception string
"123<>|", stipulating that 123 is to be excepted from the search
if another digit is located immediately to its right. There then
follows two successive delimiters, which are used to switch from
exceptions strings to search strings. These are followed by the
actual search string "123" and the concluding delimiter
character. If this exception string were written after the
search string (i.e. "|123 >/><|123|123<>|>/|"), this would
result in all numerical sequences of "123" being found, with the
exception string condition remaining ineffective. This is
because it has the same length (the characters given for the
margin strings are not counted) as the search string and thus
receives no priority, since the priority of strings of equal
length is assigned to the order in which they were entered.
Note: A shorter character search table having the same effect
would be "|123 ><4<>>/|".

"|>< ><|AND<>|>< |" defines a search string with which all the
strings "and" are searched that occur after a blank or at the
left margin and, at the same time, in front of a blank or at the

TUSTEP - 257 - Basics

right margin of the text to be scanned. The specification is to
be read as follows: "|" = delimiter freely chosen for the string
search table, ">< " = one or no blank, "><|" = separator for the
left margin of the core string (together with the preceding
specification, this means: a blank must directly precede the
core string, or if it is missing, no other characters are
allowed at this left margin; in that case, the left margin must
correspond to the beginning of the text to be scanned), "AND" =
string to be searched, "<>|" = delimiter for the right margin of
the core string, ">< " = one or no blank (together with the
preceding specification, this means: a blank must directly
follow the string which is searched, or if it is missing, no
other characters are allowed at this right margin; in that case,
the right margin must correspond to the end of the text to be
scanned).

Parameter type X: Character string pair table

Specified in the information field are string pairs whose first
string is the search string, which is to be replaced by the
pair às second string, the substitution string. Search and
substitution strings may be of different length. They are
separated from each other by a delimiter of the user às choice.
The delimiter is the first character (column 11) in the
parameter às information field.

If one line is too small for the parameter às data, continuation
lines (with the same parameter identification and same delimiter
character, cf. page 244) may be used.

Besides string pairs, exception strings (= search strings to be
skipped on replacing, for which therefore no substitution
strings exist) may also be included. To switch from string pairs
to exception strings, an additional delimiter is to be entered
at the location where a search string would normally be entered.
Then, one or more exception strings may be specified. To switch
back from exception strings to string pairs, an additional
delimiter must again be entered at the location where an
exception string would be expected, and string pairs may again
be entered. By using this procedure, it is possible to switch
between string pairs and exception strings as often as desired.
The last string must also be followed by a delimiter.

For the specification of the search strings and the exception
strings, the same rules are valid as for the string search table
(parameter type IX).

NEW: In substitution strings, uppercase and lowercase letters
will be interpreted as such.

OLD: In substitution strings, letters are interpreted as
lowercase letters, unless they are individually marked by a
preceding "<". It is possible to specifiy lowercase letters
by ">", but this does not have any effect.

Basics - 258 - TUSTEP

References (in substitution strings)

Instead of specifying single characters in substitution strings,
it is also possible to include references to elements of the
corresponding search string (including any specified margin
strings), if the characters found in the text which correspond
to an element of the search string are to be substituted at this
position during a search and replace operation.

>=nn Reference to the nn-th element of the search string:
characters corresponding to the nn-th element of the search
string will be inserted in the text unchanged at this
position during a search and replace operation. The
reference may refer to an element of the core string or to
an element of the margin string. "nn" represents a
two-digit number (numbers less than 10 are written with a
leading zero).

<=nn Reference to the nn-th last element of the search string:
characters corresponding to to the nn-last element of the
search string (counting from the end of the string) will be
inserted in the text unchanged at this position during a
search and replace operation. The reference may refer to an
element of the core string or to an element of the margin
string. "nn" represents a two-digit number (numbers less
than 10 are written with a leading zero).

>+nn as in >=nn; but during replacement all lowercase letters
which correspond to the specified element of the search
string will be changed to uppercase letters.

<+nn as in <=nn; but during replacement all lowercase letters
which correspond to the specified element of the search
string will be changed to uppercase letters.

>-nn as in >=nn; but during replacement all uppercase letters
which correspond to the specified element of the search
string will be changed to lowercase letters.

<-nn as in <=nn; but during replacement all uppercase letters
which correspond to the specified element of the search
string will be changed to lowercase letters.

Parameter type XI: Miscellaneous

The information field contains specifications in a format
described in the respective program.

If one line is not sufficient for the parameter card,
continuation lines (having the same parameter identification)
may be used. A blank is always added to the end of a line.

TUSTEP - 259 - Basics

Selecting and elminating text parts

One of the most common operations used in TUSTEP is the
selection or elimination of specific parts of a text unit (=
running text up to 32000 characters long). This is done with the
help of unique markers contained in the text. These markers can
take the form of a ("beginning marker") and an end "end
marker" to mark the beginning and end of the text part to be
selected or eliminated. Or they can be interpreted as a pair of
brackets, the the text enclosed in each pair of brackets being
either selected or eliminated.

These two methods of marking text for selection or elimination
may also be combined. In this case the text parts marked by
beginning and end markers are first selected. Then each selected
text part can be further processed based on any brackets it may
contain.

In some programs, this process of selecting or eliminating text
can be applied to the same text unit repeatedly, with each
selected text part being joined to a new text unit. Individual
text parts can therefore be moved and arranged in the desired
order.

Selecting or eliminating text using beginning and end markers

The beginning and end markers for text parts to be either
selected or eliminated are specified in separate parameters. In
the following, the parameter for the beginning marker will be
called A, that for the end parameter will be called. E. More
than one character string may be specified as a marker for each
of these two parameters, with each character string being equal
in value.

An index can also be set up with an additional parameter. This
index can be used to determine whether the marked text part is
to be selected or eliminated, and whether the marker itself is
to be included in the selection or elimination procedure. In the
following, the parameter for this index will be called AEI. The
index is a numerical specification having the following
definitions:

1 = Selects the first text part marked by parameters A and E
(starting with a beginning marker and ending with either the
next end marker or the end of the text unit). The rest will
be eliminated.

If only parameter A has been specified, the selected text
part ends at the end of the text unit. If only parameter E
has been specified, the selected text part starts at the
beginning of the text unit.

0 = Eliminates that part of the text unit that would be selected
with the value 1 (preceding definition).

Basics - 260 - TUSTEP

3 = As with 1, but selects all text parts (instead of just the
first) marked by character strings of parameters A and E.
(The second text part starts with the beginning marker that
follows the end of the first marked text part.) The rest
will be eliminated.

If only parameter A has been specified, the selected text
parts starts with the last beginning marker occuring in the
text unit and ends at the end of the text unit. If only
parameter E has been specified, the selected text part
starts at the beginning of the text unit and ends before the
last end marker occuring in the text unit.

2 = Eliminates that part of the text unit tha would be selected
by the value 3 (preceding definition).

For the values 0 to 3, each beginning marker will be regarded as
part of the following text, while the end marker is no longer
considered part of the text preceding it. This rule for
beginning and end markers can be reversed by adding 10 and/or
20. When 10 is added to the above values (i.e. specifying a
value from 10 to 13), a beginning marker will no longer be
considered part of the text following it. When 20 is added, each
end marker will be considered part of the text preceding it.
When 30 is added, beginning markers will not be considered part
of the text following them but end markers will be considered
part of the text preceding them.

For the values 2 and 3, the search for the next beginning marker
commences at the first position following the most recently
found end marker, as it is not considered to be part of the text
preceding it. Beginning and end markers may therefore overlap in
the text. If 20 or 30 has been added to these values, the search
for the next beginning marker will commence at the position
following the last position of the most recently found end
marker, as this is no longer considered to be part of the
preceding text part.

The following tables provide a schematic illustration of how
different index definitions affect the selection and elimination
of text parts. The upper and bottom line of each diagram
represents the text from which the text parts are to be either
selected or eliminated. An "[A]" stands for a beginning marker
specified with parameter A, and "[E]" stands for an end marker
specified with parameter E. Each of the lines between the top
and bottom lines are flanked by two index values which can be
specified with parameter AEI. One value is located in the left
column and the other in the right. If parameter AEI has been
used to specify the value in the left column, those parts of the
middle column line represented by a "=" will be selected, while
those represented by a "." will be eliminated. If the value in
the right column is has been specified, the "=" text parts will
be eliminated and the "." parts will be selected.

TUSTEP - 261 - Basics

1. If both parameters A and E have been specified:

 xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx

 1 ····=======··································· 0
 3 ····=======·······=======·······=======······· 2
 11 ·······====··································· 10
 13 ·······====··········====··········====······· 12
 21 ····==========································ 20
 23 ····==========····==========····==========···· 22
 31 ·······=======································ 30
 33 ·······=======·······=======·······=======···· 32

 xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx

 xxxx[E]xxxx[A]xxxx[A]xxxx[E]xxxx[E]xxxx[A]xxxx

 1 ···········==============····················· 0
 3 ···········==============··············======= 2
 11 ··············===========····················· 10
 13 ··············===========·················==== 12
 21 ···········=================·················· 20
 23 ···········=================···········======= 22
 31 ··············==============·················· 30
 33 ··············==============··············==== 32

 xxxx[E]xxxx[A]xxxx[A]xxxx[E]xxxx[E]xxxx[A]xxxx

2. If only parameter A has been specified:

 xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx

 1 ····== 0
 3 ································============== 2
 11 ·······======================================= 10
 13 ···································=========== 12
 21 ····== 20
 23 ································============== 22
 31 ·······======================================= 30
 33 ···································=========== 32

 xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx

Basics - 262 - TUSTEP

 xxxx[E]xxxx[A]xxxx[A]xxxx[E]xxxx[E]xxxx[A]xxxx

 1 ···········=================================== 0
 3 ·······································======= 2
 11 ··············================================ 10
 13 ··==== 12
 21 ···········=================================== 20
 23 ·······································======= 22
 31 ··············================================ 30
 33 ··==== 32

 xxxx[E]xxxx[A]xxxx[A]xxxx[E]xxxx[E]xxxx[A]xxxx

3. If only parameter E has been specified:

 xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx

 1 ===========··································· 0
 3 =======================================······· 2
 11 ===========··································· 10
 13 =======================================······· 12
 21 ==============································ 20
 23 ==···· 22
 31 ==============································ 30
 33 ==···· 32

 xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx[A]xxxx[E]xxxx

 xxxx[E]xxxx[A]xxxx[A]xxxx[E]xxxx[E]xxxx[A]xxxx

 1 ====·· 0
 3 ================================·············· 2
 11 ====·· 10
 13 ================================·············· 12
 21 =======······································· 20
 23 ===================================··········· 22
 31 =======······································· 30
 33 ===================================··········· 32

 xxxx[E]xxxx[A]xxxx[A]xxxx[E]xxxx[E]xxxx[A]xxxx

 - 263 -

Selecting and eliminating using parentheses

The markers serving as opened and closed parentheses are
specified in separate parameters. In the following, the
parameter for opened parentheses will be known as KLA; the
parameter for closed parehtheses will be known as KLZ. More than
one string can be specified as "parentheses" in each of these
two parameters, with each string of a parameter being regarded
as equal in value.

An index can be specified with a further parameter. The index is
used to determine whether the text part in "parentheses" to to
be selected or eliminated, as well as whether the marker itself
is to be included in the selection or elimination process. In
the following, the parameter fir the index will be called KLI.
The index required numerical specifications defined as follows.

0 = Eliminates the text parts in parentheses (including the
parentheses themselves). Any missing parentheses will be
supplied in their logical position at either the beginning
or end of the text unit.

1 = Selects parts that would be eliminated by the value 0
(preceding definition)

2 = Same as 0, but any missing parentheses will not be supplied
at their logical position; unpaired parentheses will be
ignored.

3 = Selects parts that would be elimined with 2.

For the values 0 to 3, each set of parentheses are considered
part of the text they enclose; they will be either eliminated or
selected along with this text. This rule can be reversed for
opened and/or closed parentheses by adding 10 and/or 20 to the
specified value. By adding 10 (i.e. specifying the values 10 to
13), the opened parentheses will not be considered part of the
enclosed text. If 20 is added, the closed parentheses will not
be considered part of the enclosed text. If 30 is added, neither
of the parthensis pair will be considered part of the enclosed
text.

The following tables provide a schematic illustration of how the
index affects the selection and elimination of text parts. The
upper and bottom line of each diagram represents the text from
which the text parts are to be either selected or eliminated.
"(((" stands for a opened parenthesis specified with parameter
KLA, and ")))" stands for a closed parenthesis specified with
parameter KLE. Each of the lines between the top and bottom
lines are flanked by two index values which can be specified
with parameter KLI. One value is located in the left column and
the other in the right. If parameter AEI has been used to
specify the value in the left column, those parts of the middle
column line represented by a "=" will be selected, while those
represented by a "." will be eliminated. If the value in the
right column is has been specified, the "=" text parts will be
eliminated and the "." parts will be selected.

Basics - 264 - TUSTEP

 xxxx(((xxxx)))xxxx(((xxxx)))xxxx(((xxxx)))xxxx

 0 ====··········====··········====··········==== 1
 2 ====··········====··········====··········==== 3
 10 =======·······=======·······=======·······==== 11
 12 =======·······=======·······=======·······==== 13
 20 ====·······=======·······=======·······======= 21
 22 ====·······=======·······=======·······======= 23
 30 =======····==========····==========····======= 31
 32 =======····==========····==========····======= 33

 xxxx(((xxxx)))xxxx(((xxxx)))xxxx(((xxxx)))xxxx

 xxxx)))xxxx(((xxxx(((xxxx)))xxxx)))xxxx(((xxxx

 0 ·······====························====······· 1
 2 ===========························=========== 3
 10 ·······=======·····················=======···· 11
 12 ==============·····················=========== 13
 20 ····=======·····················=======······· 21
 22 ===========·····················============== 23
 30 ····==========··················==========···· 31
 32 ==============··················============== 33

 xxxx)))xxxx(((xxxx(((xxxx)))xxxx)))xxxx(((xxxx

TUSTEP - 265 - Basics

Basics - 266 - TUSTEP

 M a c r o s

TUSTEP - 267 - Basics

Survey:

General notes 268

 Calling macros 268
 Macro variables 269

Macro instructions 271

 Specifications 271
 Assignments 271
 Inquiries 273
 Entering data 273
 File information 273
 Miscellaneous information 274
 Files: opening, creating, etc. 275
 Loops . 275
 Arithmetic operations 276
 Selection 277
 Messages 277
 Comments 278
 Suppressing command execution 278
 Terminating macro processing 278
 Defining control characters 278

Conditions 280

 Comparing strings 280
 Checking strings 281
 Comparing numbers 282
 Listing selection switches, etc. 282
 Connecting conditions 282

Compute statements 283

 Integer variables 283
 Functions 283
 Arithmetic expressions 286
 Comparison conditions 286
 Logical expressions 287
 Value assignments 287
 Conditional instructions 287
 Notes . 288

Test aids 289

Examples . 290

Basics - 268 - TUSTEP

General notes

By using macros, the TUSTEP user may define commands of his own.
A macro is a sequence of macro instructions and TUSTEP commands
(if necessary, including parameters) which is recorded in a
"macro file" (cf. page 20). On calling a macro, a command
sequence is composed which (depending on the macro instructions)
is then normally executed.

In the macro, lines containing two dollar signs in the first two
columns are interpreted as macro instructions. Lines without
this instruction marker are inserted into the command sequence
to be composed, unless they are skipped according to a preceding
macro instruction or unless they are part of the definition of
an asterisk variable (see below).

In order to make macros more readable, it is possible to insert
blanks after column 3 in macro instruction. Blanks are
significant only in strings enclosed by quotation marks (") and
in messages. All other blanks in marco instructions will be
ignored.

Calling macros

The macro-call has the same structure as a TUSTEP command (see
"General information" concerning commands, page 55); a dollar
sign and the macro name (#$Macroname, ...) is given instead of
the command name. The dollar sign distinguishes macros from
commands. In contrast to command names, macro names may not be
abbreviated. The macro also defines whether specifications are
possible, and if so, which ones can be given.

On calling a macro, a check is first made as to whether the
macro has been recorded (generally, by the appropriate Load
instruction) in the file most recently proocessed with the
Editor. In this case, the macro is read from this file;
otherwise, it is read from the macro file. This makes it
possible to test a macro without having to copy the macro (with
the Unload instruction) back into the macro file each time.

Before macros can be called, the command #DEFINE (see page 83)
must first be used to specify the file which contains the
macros.

TUSTEP - 269 - Basics

Macro variables

Macro variables are used to represent a character string. This
string is known as the variable value or variable contents.
Wherever the name of a macro variable in pointed brackets occurs
in a macro, this name (including the pointed brackets) will be
replaced by the current value of the macro variable. The name of
a macro variable may consist of 1 to 12 characters (letters,
digits and " ", but must begin with a letter.

A macro variable is defined by assigning it a value (i.e. a
character string) using a macro instruction. After being so
defined, it can be used within macros, remaining valid only
until the macro has been run. The next time a macro is called,
the contents of the variable can no longer be accessed.

However, variables can also be defined independent of macros.
These are called TUSTEP variables and can be defined with the
command #DEFINE (see page 85). Each variable so defined remains
valid until it is either redefined or the TUSTEP session is
terminated. A TUSTEP variable can also be defined using a macro
instruction and the contents of such a TUSTEP variable can be
accessed within a macro.

The "asterisk variables" are a special kind of macro variable.
They represent zero, one, or more than one string. When
modifying a line of the macro using asterisk variables, the
following must be observed: in a line containing a macro
instruction (i.e., a line which begins with $$), the names of
the asterisk variables (including the brackets) will be replaced
by a "*". Lines not beginning with $$ are inserted into the
command sequence n-times, where n is the number of strings
represented by the asterisk variable; the name of the asterisk
variable (including the brackets) is replaced each time by one
string of the asterisk variable. Such a line of the macro may
not contain more than one asterisk variable.

In addition, integer variables can be used in arithmetic
operations. Having a name from I(0) to I(99), these variables
may only contain numerical values. Similar to the value
(contents) of a macro variable, the results of arithmetic
calculations stored in these variables can be inserted at any
position by placing these integer variables in pointed brackets.

Example:

Let às say the following variables have been defined:

1. The macro variable "name" contains the string "PAR".
2. The integer variable I(1) contains the value 2.
3. The asterisk variable "words" contains the three strings

"but", "or", "and".

Basics - 270 - TUSTEP

The line

Example: <name> <I(1)> /<word>/

would produce the following line after the variables have been
replaced:

Example: PAR 2 /but/
Example: PAR 2 /or/
Example: PAR 2 /and/

TUSTEP - 271 - Basics

Macro instructions

Specifications

Macro variables can be assigned current values when the macro is
called. To do so, the respective macro variables must be defined
as specifications with the following macro instruction.

$$! Specificationname1, Specificationname2, ...

The names of the macro variables so defined are identical to the
specification names. If specification values are given when
calling the macro, these values will be assigned to the
respective macro variables. If no value is given for a
specification when calling the macro, an empty string is
assigned to the respective macro variable. If in this case a
different string is to be assigned instead of an empty string,
this may be indicated by using the following form of the above
macro instruction:

$$! Specificationname1=Specificationvalue1, ...

In this way, default values can be defined for the
specifications.

The definition of the specifications can take up more than one
line. These lines must follow in direct succession. However, the
definition for each individual specification must be written in
a single line, i.e. it cannot occupy different lines.

$$! Specificationname1, Specificationname2
$$! Specificationname3

The definition of specifications must be made at the beginning
of the macro. Only comment lines marked by "$$-" (see below) may
precede them.

Assignments

A macro variable can also be defined and assigned a value with
the following macro instruction:

$$: Macrovariablename = "String"

The string, written between the quotation marks and which may
not contain any quotation marks itself, is assigned to the macro
variable with the given name. This instruction may also be used
in order to assign a new value to a macro variable defined
previously.

Basics - 272 - TUSTEP

This macro instruction has two alternatives:

$$: Macrovariablename = #"String"

assigns a number to the macro variable specified. It indicates
the number of substrings which make up the given string.
Substrings are parts of a string which are separated from each
other by an apostrophe. A substring may be empty.

$$: Macrovariablename = ##"String"

also assigns a number to the given macro variable. It indicates
the number of characters which make up the given string.

An asterisk variable can be defined and assigned a value with
the following macro:

$$: Macrovariablename = *

The strings entered between this macro instruction and the
following macro instruction (= next line beginning with $$) are
assigned to the macro variable with the given name. Each line
represents a string. They may contain macro variables excluding
asterisk variables. This instruction may also be used to assign
a new value to a macro variable defined previously.

With the command #DEFINE (see page 83) TUSTEP variables can be
defined and given a preassigned value. If the value of such a
variable is to be used in a macro, it must be made accessible
with the following macro instruction:

$$; Macrovariablename = "String"

If a TUSTEP variable having the same name has already been
defined with the command #DEFINE (or with the macro instruction
DEFINE outlined below), its value will be assigned to the macro
variable. Otherwise, the string given in the instruction is
assigned to the macro variable.

The following macro instruction can also be used to define a
TUSTEP variable within a macro:

$$ DEFINE Macrovariablenname

Here the contents of the specified macro variable will be copied
to a TUSTEP variable having the same name. If the contents of
the macro variable are subsequently altered, this will have no
effect on the TUSTEP variable of the same name.

TUSTEP - 273 - Basics

Inquiries

With the following macro instruction, a macro variable can be
defined and assigned a value. In interactive mode, a message
will be displayed on screen with a response prompt:

$$? "Message", Macrovariablename = "String"

The string entered as the response (one line maximum) is
assigned to the given macro variable. If an empty response is
entered or if the macro is called during a batch job, the string
given in the instruction itself is assigned to the macro
variable. This instruction may also be used to assign a new
value to a macro variable defined previously.

Entering data

The following macro instruction is used to define an asterisk
variable. Data entered after the macro is called will be read
and assigned to the asterisk variable whose name is given in the
macro instruction:

$$? "Message", Macrovariablename = *

The data must be ended with "*EOF". Whenever this type of macro
instruction is processed, the each data set that follows will be
read up to the next "*EOF".

If the data are entered at the display device, they will be
requested with the message given in the macro instruction.

File information

With the following macro instructions, a macro variable can be
defined and assigned a numerical value. This can be used to
establish the following sizes of an opened TUSTEP file (but not
a system file):

- number of records

$$: Macrovariablename = RECORDS "filename"

- length of the shortest record

$$: Macrovariablename = MINLEN "filename"

 Limitation: if the shortest record of a file is deleted or
lengthened in the Editor, the length of the resulting shortest
record will not be reestablished. In this case, the old
(incorrect) value will be retained by the macro variable.

Basics - 274 - TUSTEP

- average record length

$$: Macrovariablename = RECLEN "filename"

- length of the longest record

$$: Macrovariablename = MAXLEN "filename"

 Limitation: if the longest record of a file is deleted or
shortened in the Editor, the length of the resulting longest
record will not be reestablished. In this case, the old
(incorrect) value will be retained by the macro variable.

- page number of the first record

$$: Macrovariablenname = FIRSTPAGE "filename"

- page number of the last record

$$: Macrovariablenname = LASTPAGE "filename"

- number of pages (more precisely: page number of the last
record - page number of the first record + 1)

$$: Macrovariablename = PAGES "filename"

- file size in bytes

$$: Macrovariablename = BYTES "filename"

These instructions can also be used to assign new values to
macro variables already defined.

Miscellaneous information

The following macro instructions are used to define a macro
variable and assign a string to it.

- Date written as xx.xx.xx (e.g. 12.01.90)

$$: Macrovariablenname = DATE_1

- Date written as xx. xxx. xxxx (e.g. 12. Jan. 1990)

$$: Macrovariablenname = DATE_2

- Date written as xx. xxxxxxx xxxx (e.g. 12. January 1990)

$$: Makrovariablenname = DATE_3

- Time written as xx:xx (e.g. 12:00)

$$: Macrovariablenname = TIME

- Host computer name

TUSTEP - 275 - Basics

$$: Macrovariablenname = HOST

- User identification

$$: Macrovariablenname = USER

- Current project name

$$: Macrovariablenname = PROJECT

These instructions can also be used to assign a new value to a
macro variable already defined.

Files: opening, closing, creating, deleting, renaming

With the following macro instruction, files can be opened,
closed, created, deleted or renamed while a macro is being
processed. This is carried out by calling the corresponding
TUSTEP command:

$$ EXECUTE #command

One of the following commands is used for #command,

 #CLOSE, ... (described on page 64)
 #RENAME, ... (described on page 163)
 #OPEN, ... (described on page 151)
 #CREATE, ... (described on page 79)
 #ERASE, ... (described on page 93)

Command names may not be abbreviated. Otherwise, there are no
limitations concerning these commands.

Commands generated by macros are not executed until the entire
macro has been processed. However, with this macro instruction
the commands will be executed immediately.

To obtain, for example, information about a file (see below),
the file must first be opened. If it is not opened (this can
ascertained with a macro instruction, see below), it must first
be opened with the EXECUTE instruction. An OPEN command used
without this instruction will not produce the desired result,
since the file will be opened only after the macro has been
processed.

Loops

With the following macro instructions it is possible to evaluate
one or more successive lines more than once. There are three
kinds of loops:

$$ LOOP Macrovariablename = "String"
...
$$ ENDLOOP

Basics - 276 - TUSTEP

The lines entered between LOOP and ENDLOOP are processed for
each substring which contains the given string. At the beginning
of the loop the current substring will be assigned to the macro
variable specified. Substrings are parts of a string which are
separated from each other by an apostrophe. A substring may be
empty.

$$ LOOP Macrovariablename=Initialvalue,Endvalue,Stepsize
...
$$ ENDLOOP

The lines entered between LOOP and ENDLOOP are processed for
each number of the loop counter. At each start of the loop, the
contents of the loop counter are assigned to the specified macro
variable. The loop counter runs through the values from the
specified initial value up to the specified end value in the
given step size. The step size (including the preceding comma)
may be omitted. In this case, 1 is the default step size.

$$ LOOP
...
$$ ENDLOOP

The lines entered between LOOP and ENDLOOP are repeatedly
processed until the loop is exited with the macro instruction

$$ EXIT

This macro instruction may be used for all three kinds of loops
in order to terminate the processing of the loop prematurely.
The processing of the macro continues after ENDLOOP.

Arithmetic operations

Arithmetic operations can be executed in the macro instruction

$$# Computestatements

If one line is not sufficient for the compute statements, they
can be distributed over several lines (each line must begin with
$$#). The compute statements are executed after the names of the
macro variables are replaced by their assigned values. As a
consequence, the value of macro variables cannot be changed by
compute statements.

Computed numerical values which are to be used outside compute
statements must be stored in the integer variables I(0) to
I(99). The numerical values of these integer variables can be
inserted at any place in the same manner as the values of macro
variables. In this case, the name of the respective integer
variable is entered in pointed brackets instead of the name of
the macro variable; it is to be written as I(n), where n is any
number from 0 to 99.

TUSTEP - 277 - Basics

Compute statements are described on page 283.

Selection

With the following macro instructions, it is possible to have
one or more successive lines interpreted only under certain
conditions:

$$ IF (condition 1) THEN
...
$$ ELSEIF (condition 2) THEN
...
$$ ELSEIF (condition 3) THEN
...
...
...
$$ ELSEIF (condition n) THEN
...
$$ ELSE
...
$$ ENDIF

The conditions are checked in succession. If a condition is
true, the following lines will be interpreted up to the next
ELSEIF or ELSE. All other lines between IF and ENDIF are
skipped. If no condition is true, the lines between ELSE and
ENDIF will be evaluated.

The number of ELSEIF instructions depends on the number of
conditions which are to be checked. If only a single condition
is to be checked, the ELSEIF instructions are not necessary.
Similarly, the ELSE instruction is not necessary if there are no
further lines (between IF and ENDIF) which are to be evaluated
in case none of the conditions are true.

The conditions are described on page 280.

Messages

With the macro instruction

$$+ Message

messages may be listed into the journal (i.e. in interactive
mode, the screen) during the processing of the macro.

For messages to be listed only when the macro is called in
interactive mode, the following macro instruction may be used:

$$* Message

With this macro instruction, information concerning user
responses and their effect can be listed.

Basics - 278 - TUSTEP

Comments

With the macro instruction

$$- Comment

comments may be inserted in a macro. They are ignored when the
macro is processed.

A comment given directly at the beginning of a macro is
interpreted as a description of the macro and can be listed with
the command #INFORM (cf. page 111).

Surpressing command execution

Normally, the command sequence which has been compiled by the
macro-call is then executed. If execution is to be surpressed
because the macro e.g. has been called with invalid
specification values, this can be achieved by setting the error
flag with the following macro instruction:

$$ ERROR

By using this macro instruction, the processing of the macro is
not aborted. However, loops will be run only once after the
error flag has been set.

Terminating macro processing

With the macro instruction

$$ STOP

the processing of the macro can be terminated prematurely. It
does not set the error flag.

Defining control characters

There are three control characters which may be changed: the
dollar sign (with which the macro instructions are marked in the
first two columns of a line) and the pointed brackets (which
enclose the name of a macro variable at places where the
contents of the macro variables are to be inserted). After the
macro instruction

$$= * []

the asterisk and the square brackets are valid as control
characters. Instead of the asterisk (as here in the example) any
special character is allowed; instead of square brackets,

TUSTEP - 279 - Basics

parentheses, pointed brackets or braces may be used. After
having changed the control characters with the instruction
described above, the default control characters may be set again
with the following instruction:

**= $ < >

If only the control character which marks the macro instruction
is to be changed, pointed brackets may be omitted in the macro
instruction.

Basics - 280 - TUSTEP

Conditions

The following describes possible conditions for the Selection
instruction. Number-1 and Number-2 represent a number (= string
of digits) with or without a sign; Cstr, Cstr-1, Cstr-2, ...
represent any character string. Normally, the name of the macro
variable enclosed in pointed brackets is entered instead of the
number or the string to be checked. The validy of a condition is
checked after the names of the macro variables have been
replaced by their assigned values. No distinction is made
between upper and lower case letters. They are treated equally.

Comparing strings

"Cstr-1" .EQ. "Cstr-2" Cstr-1 and Cstr-2 are equal

"Cstr-1" .EQ. "Cstr-2","Cstr-3",... Cstr-1 corresponds to at
least one of the strings Cstr-2, Cstr-3,
...

"Cstr-1" .NE. "Cstr-2" Cstr-1 and Cstr-2 are not equal

"Cstr-1" .NE. "Cstr-2","Cstr-3",... Cstr-1 does not correspond
to any of the strings Cstr-2, Cstr-3,
...

"Cstr-1" .LT. "Cstr-2" Cstr-1 precedes Cstr-2 in alphabetical
order.

"Cstr-1" .GT. "Cstr-2" Cstr-1 follows Cstr-2 in alphabetical
order.

"Cstr-1" .LE. "Cstr-2" Cstr-1 and Cstr-2 are equal, or Cstr-1
precedes Cstr-2 in alphabetical order.

"Cstr-1" .GE. "Cstr-2" Cstr-1 and Cstr-2 are equal, or Cstr-1
follows Cstr-2 in alphabetical order.

"Cstr-1" .AB. "Cstr-2" Cstr-1 and Cstr-2 are equal, or Cstr-1
is an abbreviation of Cstr-2. An
abbreviation period (e.g. "Cstr.") which
may occur in Cstr-1 is ignored.

"Cstr-1" .AB. "Cstr-2","Cstr-3",... Cstr-1 corresponds to at
least one of the strings Cstr-2, Cstr-3,
... , or Cstr-1 is an abbreviation of at
least one of the strings Cstr-2, Cstr-3,
... . An abbreviation period that may
occur in Cstr-1 is ignored.

TUSTEP - 281 - Basics

Checking strings

In the following conditions, .NE. may be given instead of
.EQ. A condition containing .NE. is true if it is false when it
contains .EQ. and vice versa.

"Cstr" .EQ. NUMBER Cstr is a number with or without a sign.

"Cstr" .EQ. NAME Cstr consists of 1 to 12 letters and
digits and begins with a letter.

"Zflg" .EQ. PROJECTNAME Cstr is a valid project name (regardless
of whether a project with this name
already exists).

"Zflg" .EQ. PROJECT Cstr is the name of an existing project
(regardless of whether it has existing
files).

"Cstr" .EQ. FILENAME Cstr is a valid file name (regardless of
whether a file with this name exists).

"Cstr" .EQ. FILE Cstr is the name of an existing file
file (regardless of whether the file
with this name is opened).

"Cstr" .EQ. READ Cstr is the name of a file which has
been opened for reading or for writing
(and thus also capable of being read)

"Cstr" .EQ. WRITE Cstr is the name of a file which has
been opened for writing.

"Cstr" .EQ. SCRATCH Cstr is the name of a scratch file
(temporary file).

"Cstr" .EQ. EMPTY Cstr is the name of an empty file which
has been opened.

"Cstr" .EQ. SEQ Cstr is the name of a file of the type
SEQ which has been opened.

"Cstr" .EQ. RAN Cstr is the name of a file of the type
RAN which has been opened.

"Cstr" .EQ. SDF Cstr is the name of a file of the type
SDF which has been opened.

Basics - 282 - TUSTEP

Comparing numbers

Number-1 .EQ. Number-2 Number-1 is equal to Number-2
Number-1 .NE. Number-2 Number-1 is not equal to Number-2
Number-1 .LT. Number-2 Number-1 is less than Number-2
Number-1 .GT. Number-2 Number-1 is greater than Number-2
Number-1 .LE. Number-2 Number-1 is less than or equal to

Number-2
Number-1 .GE. Number-2 Number-1 is greater than or equal to

Number-2

Inquiring selection switches etc.

+SWn Sense switch n (n = 1 to 7) is set.
-SWn Sense switch n (n = 1 to 7) is cleared.
BATCH Macro was called during a batch job.
DIALOG Macro was called in interactive mode.
ERROR Macro instruction ERROR was already executed.
ERRORSTOP Error stop is set.
PARAMETER Parameter logging is activated.
PARAMETER_OLD Parameter mode is set to OLD.
PARAMETER_NEW Parameter mode is set to NEW.
JOURNAL Journal file is active.

Connecting conditions

Instead of one condition, several conditions may also be
specified which are connected by .AND. (logical AND) or .OR.
(logical OR). When the condition is processed, the logical AND
is given precedence over the logical OR. Additional brackets are
not allowed.

TUSTEP - 283 - Basics

Compute statements

In the following, the term "instruction" always refers to a
compute statement which is part of a macro instruction beginning
with $$#. It should not be confused with a macro instruction
(which may look similar).

The individual compute statements must be separated from each
other by a semicolon. Blanks are insignificant and may be
inserted at any place to make the compute statements more
legible. A compute statement may also be interrupted at any
place and continued in the next line.

To start with, a few terms will be defined which are used in
defining various compute statements.

Integer variables

An integer variable is a storage location which is identified by
a name and contains an integer value. Each of these integer
variables has a unique name by which the contents of the
variable can be accessed. This access is made by placing the
name of the integer variable at the location where its numerical
value is defined (cf. "Value assignment") or is required (cf.
"Arithmetic expression"). The names of the integer variables are
predefined and cannot be freely chosen. At the start, all
integer variables have the value zero. The largest numerical
value that can be saved to a variable depends on the type of
computer being used. In most cases this is a the value
2 147 483 647.

The integer variables (100 storage locations) may be addressed
as indexed variables written as I(Index). The index may be any
arithmetic expression (cf. below). However, the value of the
arithmetic expression must be between 0 and 99 (inclusively).

Functions

In order to support calculations, certain functions are
available to the user. A function is called with its name and
one or more arguments. Arguments are separated from each other
by a comma and are entered in brackets after the function name.
They may take the form of any arithmetic expression (cf. below).
If a function with these arguments is called, a numerical value
- the function value - is calculated according to the function
regulations.

Basics - 284 - TUSTEP

Available functions

 (For simplicity às sake, the following examples employ numbers
in the individual arguments. In actual practice, integer
variables or the names of macro variables (in brackets) are
used in most cases instead of numbers. Integer variables as
well as the names of the macro variables will be replaced by
their assigned values before the compute statements are
executed.)

- Calculating the absolute value: IABS (arg)

 The function value obtained is the absolute value of arg.

 Example: The function value of IABS(-4) is 4.

- Calculating the minimum: MIN (arg1, arg2)

 The function value obtained is the smaller of the two
numerical values arg1 and arg2.

 Example: The function value of MIN(-5,+3) is -5.

- Calculating the maximum: MAX (arg1, arg2)

 The function value obtained is the larger of the two numerical
values arg1 und arg2.

 Example: The function value of MAX(-5,+3) is +3.

- Calculating the division remainder: MOD (arg1, arg2)

 The function value obtained is the remainder obtained when
arg1 is divided by arg2.

 Example: The function value of MOD(234,10) is 4.

- Interval function: IV (arg, arg1, arg2, arg3, ...)

 This function can be used to determine the interval to which
the numerical value arg belongs. A function value of 0 is
obtained if arg is less than arg1; the value 1 is obtained if
arg is greater than or equal to arg1 but less than arg2; the
value 2 if arg is greater than or equal to arg2 but less than
arg3, etc. The number of arguments is not limited to this
function. However, arg1 must be less than arg2, arg2 must be
less than arg3, etc.

 Example: The function value of IV(16,1,10,100,1000) is 2.

- Date function: ID (day, month, year, number, mode)

TUSTEP - 285 - Basics

 With this function it is possible to calculate and convert
calendar dates. This function is controlled via the argument
mode.

 To facilitate the calculation of calendar dates, days are
numbered in succession. Thus, each day bears a unique number,
the day number.

 mode=0: Current date
Input: none
Output: Current date in the arguments day, month, year

and current day number in the argument number

 mode=1: Calculating the day number by specifying the date
Input: Date in the arguments day, month, year
Result: Day number in the argument number

 mode=2: Calculating the date by specifying the day number
Input: Day number in the argument number
Result: Date in the arguments day, month, year

 mode=3: Calculating the date of Easter
Input: Year number in the argument year
Result: Date of Easter in the arguments day, month,

year and the corresponding day number in the
argument number

 mode=4: Calculating the time interval between two calendar
dates
Input: Date of the first calendar date in the

arguments day, month, year and the day number
of the second (later) date in the argument
number

Result: The time interval between the two dates in
years, months, and days (in the arguments
year, month and day) as well as in days (in
the argument number)

 The function value so obtained - independent of the value of
the argument mode - is the day of the week (1=Monday,
2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday,
7=Sunday) whose is given in the arguments day, month and year.
If there is an illegal input, the function value is zero (e.g.
if mode has a value which is not defined, or if an illegal
date is given, such as the 29th of February in a non-leap
year).

 Calculations are based on the Gregorian ||| calendar; however,
if a date occurs before October 15, 1583, the will be used. If
the Julian calendar is to be used for later dates as well, the
respective negative value is to be given as argument mode.

 Example: Calculating the date of Pentecost/Whitsuntide 1984

I(0) = ID (I(1), I(2), 1984, I(4), 3);
I(0) = ID (I(1), I(2), I(3), I(4)+49, 2);

 First, the date of Easter 1984 is calculated. It does not
matter which numerical values I(1), I(2) and I(4) contain
before the date function is called. Because 3 has been given

Basics - 286 - TUSTEP

as the mode, only the argument year is evaluated. The day of
week, day and month of Easter are stored in I(0), I(1) and
I(2), but are not used for further processing. The day number
of Easter is stored in I(4). Because the interval between
Easter and Pentecost is exactly 7 weeks (= 49 days), the day
number of Pentecost is obtained by adding 49 to the day number
of Easter. This day number is then converted into the
respective calender date. It is regardless which numerical
values I(1), I(2) and I(3) contain before the date function is
called. Because 2 has been given for the mode, only the
argument number is evaluated. The day of the week (7 for
sunday) is stored in in I(0); day, month and year of the date
of Pentecost are stored in I(1), I(2) and I(3).

Arithmetic expressions

An arithmetic expression is a rule for computing used to define
a numerical value. It consists of operands, arithmetic operators
and pairs of brackets.

An operand may be an (integer) number, an integer variable or a
function call. In the simplest case, an arithmetic expression
consists of only one of these three operands.

The arithmetic operators for the four basic mathematical
operations are:

+ Addition * Multiplication
- Subtraction / Division

When the arithmetic expression is evaluated, multiplication and
division are executed prior to addition and subtraction. If
there are several consecutive multiplication and division
operations, they are carried out from left to right. The same is
true for consecutive addition and subtraction operations.
Exceptions to this rule can be made by placing brackets at the
appropriate positions.

Please note that division is executed with integer results only;
remainders will be get lost and there is no rounding off. Thus,
e.g. 3/2 results in the value 1 (not 1.5) and 3/2*4 results in
the value 4 (not 6).

Relation conditions

A relation condition is where two numerical values are compared.
It consists of two arithmetic expressions connected by a
relation operator:

arithm. expression relation operator arithm. expression

There are six relation operators:

TUSTEP - 287 - Basics

.EQ. equal .NE. not equal

.GT. greater than .LT. less than

.GE. greater or equal .LE. less or equal

A relation condition is either satisfied, resulting in the
logical value TRUE, or it is not satisfied, resulting in the
logical value FALSE.

Logical expressions

A logical expression consists of relation conditions which may
be connected to each other by logical operators. In the simplest
case, a logical expression may consist of only one relation
condition.

The logical operators are:

.AND. logical AND

.OR. logical OR

A logical expression is processed analogously to an arithmetic
expression. The result is either the logical value TRUE or the
logical value FALSE. When the logical value is evaluated, the
logical AND is executed prior to the logical OR. This order may
be changed by the appropriate use of brackets.

Value assignments

A value assignment takes the form:

Integer variable = arithmetic expression

It causes the arithmetic expression to be evaluated. The result
is stored in the integer variable placed to the left of the
equals sign. In this instruction, the equals sign has the
function of an assignment operator and thus differs from its
normal mathematical function.

Examples: I(1) = 0; I(1) = I(1) + 1; I(I(1)) = MAX (I(2),I(3));
I(1) = I(1) * (I(1) + I(2)); I(0) = MOD (I(1), 1000)

Conditional statements

A conditional statement is used to specify that one or more
successive instructions are to be executed only under certain
conditions. These conditions are specified by a logical
expression. There are three forms of conditional statements:

1.) If a single instruction (in this case, this may be only a
value assignment) is to be executed only under the conditions

Basics - 288 - TUSTEP

specified in the logical expression, the following form may be
chosen:

IF (logical expression) instruction

The instruction specified after the brackets is executed only if
the logical expression in brackets has the value TRUE.
Otherwise, this instruction is skipped.

Example: IF (I(1).EQ.0) I(2) = I(2) + 1;

2.) If the following form of the conditional statement is
chosen, one or more instructions of any type may be executed on
the basis of the conditions specified in the logical expression:

IF (logical expression) THEN;
 Instructions;
END IF

The instructions entered between THEN and END IF are executed
only if the logical expression in brackets has the value TRUE.
Otherwise, these instructions are skipped.

Example: IF (I(1).EQ.60) THEN; I(1)=0; I(2)=I(2)+1; ENDIF;

3.) The third form of the conditional statement is an extension
of the second form. With it, two sequences of instructions may
be given, one of which is executed and the other one is skipped:

IF (logical expression) THEN;
 Instruction;
ELSE;
 Instruction;
END IF;

If the logical expression in brackets has the value TRUE, the
instructions located between THEN and ELSE are executed and the
instructions between ELSE and END IF are skipped. If the logical
expression has the value FALSE, the instructions between THEN
and ELSE are skipped and the instructions between ELSE and END
IF are executed.

Note

The compute statements that can be made in macros correspond to
those used in the TUSTEP program COPY. However, the GO TO
statement may not be used in macros.

TUSTEP - 289 - Basics

Testing aids

If a macro is called, the following may be specified directly
after the macro name:
- whether all the commands generated by the macro are to be

executed, or only a certain range
- whether the generated commands are to be additionally

listed/logged
- whether the generated commands are to be executed

#$Macro name-RANGE;LISTING;EXECUTION, ...

RANGE = pos Only the command sequence generated in
the macro and starting at record
position pos is to be executed.

= pos1-pos2 Only the command sequence generated in
the macro from record position pos1 to
record position pos2 (inclusively) is to
be generated.

In this case, "pos" represents a record
number whose syntax corresponds to
program mode (cf. page 24).

LISTING = - * No additional listing of the generated
command sequence.

= + The generated command sequence is to be
listed into the journal (in interactive
mode this is the screen).

= file Name of the file to which the generated
command sequence is to be listed.

EXECUTION = + * The generated command sequence is to be
executed.

= - The generated command sequence is not to
be executed.

Basics - 290 - TUSTEP

Examples

a) for the structure of a macro:

$$- Function: The macro PRINT outputs a file
$$- to a printer.
$$-
$$- Call: #$PRINT, FILE=..., MODE=..., PRINTER=...
$$-
$$- Mode=F formatting and printing
$$- Mode=T printing in text mode
$$- Mode=P printing in program mode
$$-
$$! FILE, MODE, PRINTER=HPII
$$-
$$- If no printer has been specified, HPII is used
$$-
$$- If no file name has been specified, user will provide
it
$$- (if an empty response is given, no commands will
generated)
$$-
$$ IF ("<FILE>".EQ."") THEN
$$? "Enter file name", FILE="-"
$$ IF ("<FILE>".EQ."-") THEN
$$ STOP
$$ ENDIF
$$ ENDIF
$$-
$$- If no mode has been specified, it will be requested from the
user
$$- (if an empty response is given, F will be assumed for mode)
$$-
$$ IF ("<MODE>".EQ."") THEN
$$+ For mode, the following entries are valid:
$$+ F for formatting and printing
$$+ T for printing in text mode
$$+ P for printing in program mode
$$+ empty entry is equivalent to F
$$? "Enter mode", MODE="F"
$$ ENDIF
$$-
$$- Generating the commands
$$-
$$ IF ("<MODE>".EQ."F") THEN
#format,source=<FILE>,erase=+,parameter=*
dev <PRINTER>
*eof
$$ ELSE
#glisting,source=<FILE>,mode=<MODE>,erase=+,parameter=*
dev <PRINTER>
*eof
$$ ENDIF
#print,,<PRINTER>

 - 291 -

b) for using the command #MACRO

In this example, the functions of the macro PRINT in the
preceding example are enhanced.

Errors may occur whenever texts are formatted. On the one hand,
they are caused by incorrect coding of formating instructions
and special characters; on the other hand, by the fact that not
all of the defined special characters can be printed by every
type of printer. If FORMAT reports too many errors, it may be
desirable to correct the input data first. For this purpose, it
must be possible to decide in the above example whether the
result of FORMAT is to be printed or not. The following approach
may be considered:

 $$? "Print listing file? (yes/no)", RESPONSE=""
 $$IF ("<RESPONSE>".AB."yes") THEN
 #print,,<PRINTER>
 $$ENDIF

However, this instruction sequence will not have the desired
effect. Namely, it will be executed as soon as the macro PRINT
is called, and not when the commands generated by the macro are
executed. But at this time FORMAT has not yet been executed and
it cannot be determined whether the text is to be printed or
not. The macro instructions for this decision may be executed
only after formating. This may be achieved with the command
#MACRO:

 #macro
 $$? "Print listing file? (yes/no)", RESPONSE=""
 $$IF ("<RESPONSE>".AB."yes") THEN
 #print,,<PRINTER>
 $$ENDIF
 *eof

In this form, however, the macro instructions would also be
executed as soon as the macro is called. To prevent this, the
marker for macro instructions (in this case the dollar sign)
must also be changed. Thus, the macro instructions for the
command #MACRO are not identified as such when the macro PRINT
is called, but only when the command #MACRO is executed:

 $$=*
 #macro
 $$? "Print listing file? (yes/no)", RESPONSE=""
 $$IF ("<RESPONSE>".AB."yes") THEN
 #print,,<PRINTER>
 $$ENDIF
 *eof
 **=$

One problem still remains: the value assigned for the macro
variable RESPONSE which is enclosed in pointed brackets may not
be inserted before the command #MACRO is executed, because the
variable has not been defined before that point in time. Thus,
not only the marker for the macro instructions has to be
changed, but also the brackets which enclose macro variables to

Basics - 292 - TUSTEP

be replaced. The desired effect is now achieved by the following
instruction:

 $$=* []
 #macro
 $$? "Print listing file? (yes/no)", RESPONSE=""
 $$IF ("<RESPONSE>".AB."yes") THEN
 #print,,[PRINTER]
 $$ENDIF
 *eof
 **=$ < >

Because this inquiry in the macro PRINT is to be listed only
after FORMAT and not after GLISTING, the PRINT command in the
last line may be replaced by the following lines:

 $$IF ("<MODE>".EQ."F") THEN
 $$=* []
 #macro
 $$? "Print listing file? (yes/no)", RESPONSE=""
 $$IF ("<RESPONSE>".AB."yes") THEN
 #print,,[PRINTER]
 $$ENDIF
 *eof
 **=$ < >
 $$ELSE
 #print,,<PRINTER>
 $$ENDIF

When the macro PRINT that has been changed in this way is called
with the command

 #$PRINT,source file,f

the following command sequence will be generated:

 #format,source=source file,erase=+,parameter=*
 dev HPII
 *eof
 #macro
 $$? "Print listing file? (yes/no)", RESPONSE=""
 $$IF ("<RESPONSE>".AB."yes") THEN
 #print,,HPII
 $$ENDIF
 *eof

TUSTEP - 293 - Basics

Basics - 294 - TUSTEP

 C h a r a c t e r s e t

TUSTEP - 295 - Basics

Survey:

General notes . 296

Exceptions for the typeset program 297

7-bit TUSTEP character set 298
8-bit TUSTEP character set 299

Special characters encoded with the control character "#" 300
Special letters encoded with the control character "#" . 301
Special characters encoded with the control character "#(name)"
 . 302

Accents and diacritical characters 306

Greek . 307
Hebrew . 309
Russian (Cyrillic) 311
Cyrillic (Church Slavonic) 314
Syrian . 316
Arabian . 317
Phonetic alphabet . 321

Display types, printed appearance 327

Superscript and subscript 327

Availability of types on specific printers 328

Alphabetcal list of special characters 329

Basics - 296 - TUSTEP

General notes

In the following tables, the input code for the desired
character is given in the far left column. Since some keyboards
do not feature all ASCII characters (DIN 66003, International
Reference Version = 7-bit code complying with ISO-Norm 664), the
first two tables (7-bit and 8-bit TUSTEP character set) provide
an alternate input code where applicable. If a keyboard
featuring the German umlaut characters and the double-S
character is being used, these keys can be used instead of the
corresponding letters preceded by the control character "^".

For reasons of space and legibility, the following tables
feature no alternate key code combinations. However, the
individual characters can always be entered with one of the
input codes outlined in the first two tables. For example, the
accent grave e can be written as either "%\e" or "%^/e" (the
accent grave character is encoded as a procent sign + backslash,
but the first table also features "^/" as an alternative for the
backslash character). The ligature ae can be written as either
"#.^a" or "#.ä" ("#.^a" is specified for the ligature, but in
the second table "ä" can be used as an alternative for "^a".

Umlauts and the double-S character can only be used for input
when the appropriate code has been set with the command #DEFINE.
This also means than various accented letters may also be typed
in directly. For example, if one of the codes CP437 or CP850 has
been set on a IBM-compatibe PC, an e grave can also be entered
with " ̀e". In this case, " è" will appear on screen upon input.
But regardless of how it is entered, e grave will be recorded in
the file as "%\e".

Characters from the first two tables (7-bit and 8-bit TUSTEP
character set) will be written to file as a single character and
will occupy one byte. Characters from the following tables will
be written as character combinations composed of characters
taken from the first two tables and will therefore occupy more
bytes. For example, the ligature ae, specified by the input code
"#.^a", takes up three bytes with the combination "#.ä" ("#" and
"." are characters from the first table, "^a" is a character
from the second table).

Every letter can be assigned up to three accent marks: two above
the letter and one below the letter. Accent codes must be
entered before the respective letter (for more than one accent,
in the order from top to bottom). Freestanding accent marks must
be written before a hard space (e.g. %<_ for a free standing
circumflex).

For representing non-Latin alphabets, an additional display code
(see page 327) is necessary at the beginning and end of the
appropriate text, since the input coding for special alphabets
is not automatically provided.

A ("CTC)" after the name of a character means that this
character is used as a print control character in TUSTEP

TUSTEP - 297 - Basics

programs. If a character so marked is to be used as a printed
character instead of a control character, it should be preceded
by a "^" when entered. (cf. table for the "8-bit TUSTEP
character set").

Special features of the typesetting program

The available characters for the typesetting program (command
#TYPESET) deviates in certain points from the list of characters
outlined here. Please refer to the description of the
typesetting program starting in Chapter 12. The most important
deviations from the Latin alphabet are:

- The characters { and } are used as control characters and must
be encoded as #.{ and #.} to be printed.

- The character pairs "", ++, << and >> as well as the character
^ (input code: ^^) are used as control codes.

- Characters encoded with the control code #(name) are only
partially available and must be encoded with a typeset macro.

Basics - 298 - TUSTEP

7-bit TUSTEP character set

Space, blank

! ! Exclamation point

" " Quotation marks

Hash mark (CTC for special characters)

$ $ Dollar (CTC for listing file)

% % Procent (CTC for accent marks)

& & Ampersand (CTC for listing file)

à à Apostrophe

((Left parenthesis

)) Right parenthesis

* * Asterisk

+ + Plus

, , Comma

- - Minus

. . Period

/ / Forward slash

: : Colon

; ; Semicolon

< < Left pointed bracket

> > Right pointed bracket

= = Equals sign

? ? Question mark

@ @ At (CTC for listing file)

[[Left bracket

]] Right bracket

\ Backslash (CTC for discretionary hyphen)

_ Underscore (CTC for hard space)

{ { Left brace

} } Right brace

| | Vertical bar

a a Lowercase letters a to z

A A Uppercase letters A to Z

1 1 Numerals 0 to 9

TUSTEP - 299 - Basics

8-bit TUSTEP character set

^! ¡ Inverted exclamation point (Spanish)

^" á Filled block

^# # Hash mark

^$ $ Dollar

^% % Procent

^& & Ampersand

^à â Inverted apostrophe

^* ã Multiplication sign

^+ † Dagger

^- Dash (long minus sign)

^. · Multiply dot

^= ä Large filled dot

^? ¿ Spanish question mark

^@ @ At

^\ ^, \ Backslash

^_ _ Underscore

^| ^; Long vertical bar

^1 1 small superscript digits 0 to 9

^a ä ä lowercase umlaut ä

^o ö ö lowercase umlaut ö

^s ß ß double s (German)

^u ü ü lowercase umlaut ü

^A Ä Ä uppercase umlaut Ä

^O Ö Ö uppercase umlaut Ö

^U Ü Ü uppercase umlaut Ü

Basics - 300 - TUSTEP

Characters encoded with the escape character "#"

#àx x Superscript character (7-bit TUSTEP character set)

#,x
x
 Subscript character (7-bit TUSTEP character set)

#;x x Superior character (7-bit TUSTEP character set)

#!x
x
 Inferior character (7-bit TUSTEP character set)

#.! § Paragraph

#. à ” Double quote

#., „ Base double quote

#.(æ Ayin

#.) ç Aleph

#.% å Double Aleph

#.* ˚ Degree

#.- è Minute

#.= î Second

#.. éêë Reference arrow

#./ || Double vertical bar

#.: ì Single guillemet pointing right

#.; í Single guillemet pointing left

#.< « Double guillemet pointing left

#.> » Double guillement pointing right

#.[ï Angle upper left

#.] ð Angle upper right

TUSTEP - 301 - Basics

Characters encoded with the escape character "#"

#àx x Superscript letter

#,x
x
 Subscript letter

#;x x o Superior letter

#!x
x
 o Inferior letter

#.d d̄ d with cross-stroke (Serbocroatian)

#.D D̄ D with cross-stroke (Serbocroatian)

#.i ı Dotless i (Turk)

#.j 3 Ligature ij

#.J 0 Ligature IJ

#.l ł l Slash (Polish)

#.L Ł L Slash (Polish)

#.o ø o Slash (Danish)

#.O Ø O Slash (Danish)

#.p 4 Lowercase thorn (Icelandic)

#.P 1 Uppercase thorn (Icelandic)

#.s 5 Long s

#.z 6 Long z / lowercase yogh (Old/Middle English)

#.Z 2 Uppercase yogh (Old/Middle English)

#.^a æ Ligature ae

#.^A Æ Ligature AE

#.^d 7 Lowercase eth (Old/Middle English)

#.^D D̄ Uppercase eth (Old/Middle English)

#.^o œ Ligature oe

#.^O Œ Ligature OE

Basics - 302 - TUSTEP

Characters encoded with the control character "#(name)" special
characters

#(AEH) ! Similar

#(BSL) \ Backslash

#(BOL) Box: upper left corner

#(BOM) Box: upper intersection

#(BOR) Box: upper right corner

#(BML) Box: left intersection

#(BMM) Box: center intersection

#(BMR) Box: right intersection

#(BUL) Box: lower left corner

#(BUM) Box: lower intersection

#(BUR) Box: lower right corner

#(C) " Copyright

#(CE) ¢ Cent

#(DIF) * Differential

#(DIV) + Division

#(DO) $ Dollar

#(DEA) # Double left brackets

#(DEZ) & Double right brackets

#(DEAG) $% Double left brackets (large)

#(DEZG) '(Double right brackets (large)

#(DP) 3 Double stroke

#(DSS) || Double vertical bar

#(DF)) Triple stroke

#(DM) ,- Average set

#(DMG) ./0
1 2 Average set (large)

#(EOM) < Real superset

#(ETM) = Real subset

#(EAG) 4
5 Left bracket (large)

TUSTEP - 303 - Basics

#(EZG) >
? Right bracket (large)

#(EF) 6 single stroke

#(EL) : Element

#(ENT) ; Corresponds to

#(EG) 78 There exists

#(EGE) 9 There exists (reverse E)

#(FA) @A For all

#(FAA) B For all (inverse A)

#(FUE) C Proportional

#(GES) F Intersects

#(GAG) D
E Left brace (large)

#(GZG) J
K Right brace (large)

#(GR) I Greater than

#(GGL) G Greater than or equal to (with -)

#(GGLD) H Greater than or equal to (with =)

#(ID) L Equivalence

#(IW) ¤ International currency symbol

#(INT) M Integral

#(INTG) NOP Integral (large)

#(KP) V Cartesian product

#(KPG) WX
YZ Cartesian product (large)

#(KL) U Less than

#(KGL) Q Less than or equal to (with -)

#(KGLD) R Less than or equal to (with =)

#(KGR) S Congruent (with -)

#(KGRD) T Congruent (with =)

#(KRS) ñ Circle

#(LM) [Empty set

#(LN) \ Logical Not

#(LO)] Logical Or

#(LU) ^ Logical And

#(MKR) ` Multiply x

#(MPU) · Multiply dot

#(MC) _ Set of complex numbers

#(MN) d Set of natural numbers

Basics - 304 - TUSTEP

#(MQ) f Set of rational numbers

#(MR) g Set of real numbers

#(MZ) h Set of complete numbers

#(MKS) a Meter: short syllable

#(MKLS) b Meter: short or long syllable

#(MLS) c Meter: long syllable

#(MPL) e Minos or Plus

#(NBL) i Gradient

#(NEL) j Not an element

#(NID) k Not identical (with /)

#(NIDS) l Not identical (with |)

#(NOM) m Not a superset

#(NTM) n Not a subset

#(P) o Published

#(PA) § Paragraph

#(PFB) pq Arrow pointing left and right

#(PFBD) rs Double arrow pointing left and right

#(PFL) tu Arrow pointing left

#(PFLD) vw Double arrow pointing left

#(PFOL) {| Arrow pointing upper left

#(PFLR) xy Arrows pointing left and right

#(PFR) ¡¢ Arrow pointing right

#(PFRD) £¤ Double arrow pointing right

#(PFO) z Arrow pointing up

#(PFOO) } Two arrows pointing up

#(PFOU) ~ Arrows pointing up and down

#(PFU) ¥ Arrow pointing down

#(PF) £ Pound sterling

#(PLM) ¦ Plus or Minus

#(PR) §¨ Product

#(PRG) ©ª«
¬ Product (large)

#(PRM) ® Per thousand

#(R) ¯ Registered

#(RAG) °
± Left parenthesis (large)

#(RZG) ²
³ Right parenthesis (large)

#(SR) ´ Perpendicular

TUSTEP - 305 - Basics

#(SUM) µ¶ Summation

#(SUMG) ·¸¹º»¼ Summation (large)

#(UOM) Ã Reflex superset

#(UTM) Ä Reflex subset

#(UE) ½ Infinite

#(UGF) ¾ Approximately equal

#(UGR) Á Approximately greater than

#(UKL) Â Approximately less than

#(UGL) ¿ Not equal (with /)

#(UGLS) À Not equal (with |)

#(VER) Å Union

#(VM) ÆÇ Union

#(VMG) È É
ÊËÌ Union (large)

#(WI) Í Angle

#(WU) Î Radical

#(WUG) ÏÐ
Ñ Radical (large)

#(ZWR) Ò Intervening space

Example of a box (using FORMAT instructions):

$$$ &a10 &+12 &m &+12 &m

$$$ #(BOL) @w ^- &t2 #(BOR)

$$$ ^| Example of a box &t2 ^|

$$$ #(BML) @w ^- &t #(BOM) @w ^- &t #(BMR)

$$$ ^| left &t ^| right &t ^|

$$$ ^| column &t ^| column &t ^|

$$$ #(BUL) @w ^- &t #(BUM) @w ^- &t #(BUR)

 Example of a box

 left right

 column column

Basics - 306 - TUSTEP

Accents and diacritical marks

a) above letters

%" ő Double acute

%(
˘
o Semicircle (open at bottom)

%) ŏ Semicircle (open at top)

%* o̊ Ring

%,
,
o Comma, apostrophe

%- ō Macron (horizontal crossbar)

%. ȯ Dot

%: ö Diaeresis

%/ ó Acute

%\ ò Grave

%> ǒ Haček

%< ô Circumflex

%? õ Tilde

b) placed below letters

%""
˝
o Double acute

%((ŏ Semicircle (open at bottom)

%))
˘
o Semicircle (open at top), brevis

%**
˚
o Ring

%,, ,o Comma

%--
¯
o Macron (horizontal crossbar)

%..
˙
o Dot

%::
¨
o Diaeresis

%; ç Cedilla

%;; ǫ Ogonek (Polish hook)

%//
´
o Acute

%\\
`
o Grave

%>>
ˇ
o Haček

%<<
ˆ
o Circumflex

%??
˜
o Tilde

TUSTEP - 307 - Basics

Greek alphabet

Start Greek: End Greek #G+ : #G-

a a A A Alpha

b b B B Beta

g g G G Gamma

d d D D Delta

e e E E Epsilon

z z Z Z Zeta

h h H H Eta

u u U U Theta

i i I I Iota

c k K K Kappa

l l L L Lambda

m m M M My

n n N N Ny

j j J J Xi

o o O O Omikron

p p P P Pi

r r R R Rho

s,w,q s, w, q S,Q S, Q Sigma

t t T T Tau

y y Y Y Ypsilon

f f F F Phi

x x X X Chi

c c C C Psi

v v V V Omega

W W Digamma

! ! Greek semicolon

; ; Greek question mark

? ; Greek question mark

Basics - 308 - TUSTEP

Greek accents

%("o Spiritus asper

%) #o Spiritus lenis

%\ &o Grave

%/ $o Acute

%? %o Tilde

%(\ (o Spiritus asper + Grave

%(/ 'o Spiritus asper + Acute

%(?)o Spiritus asper + Tilde

%)\ +o Spiritus lenis + Grave

%)/ *o Spiritus lenis + Acute

%)? ,o Spiritus lenis + Tilde

^a { Alpha with iota subscriptum

^h | Eta with iota subscriptum

^v } Omega with iota subscriptum

%- ō Macron, horizontal crossbar (above the letter)

%. ȯ Dot (above the letter)

%: ö Diaeresis (above the letter)

%--
¯
o Macron, horizontal crossbar (below the letter)

%..
˙
o Dot (below the letter)

%::
¨
o Diaeresis (below the letter)

If an accent is to be placed in front of a Greek uppercase
letter, a "_" must be inserted between the accent code and the
letter (does not apply to data for the typeset program).

TUSTEP - 309 - Basics

Hebrew ||| type

Start/end of Hebrew type: #H+/#H-

a a Alef

b b B B Beth

g g G G Gimel

d d D D Daleth

h h H H Heh

u u U U Vav

z z Z Z Zayin

x x Cheth

j j J J Teth

i i I I Yod

k,^k k, § K K Chapg

l l L L Lamed

m,^m m, ¨ M M Mem

n,^n n, © N N Nun

s s S S Samekh

y y Ayin

p,^p p, ª P P Peh

c,^c c, ¦ C C Tsadi

q q Q Q Koph

r r Resh

w w W W Sin,Shin

t t T T Tav

#.u ¬ Ligature Vav Vav

#.^u Ligatur Vav Yod

#.i « Ligatur Yod Yod

à ' single abbreviation

" " double abbreviation

- - Maqqef

: / Soph pasuq

^. .

Basics - 310 - TUSTEP

Dotting in Hebrew

#"0 0h Shewa

#"1 1h Hireg

#"2 2h Sere

#"3 3h Segol

#"4 4h Qamas

#"5 5h Pathah

#"6 6h Qubbus

#"7 7h Holem

#"8 8w Shin

#"9 9w Sin

#"0#"3 =h Hataf Segol

#"3#"0 :h Hataf Segol

#"0#"4 >h Hataf Qamas

#"4#"0 ;h Hataf Qamas

#"0#"5 ?h Hataf Patah

#"5#"0 <h Hataf Patah

^k#"0 ± final Chaph with Shewa

^k#"4 ² final Chaph with Qamas

u#"7 ³ Vav with Holem

#"- ¶h single Rafe

#"= · ·h double Rafe

#"* ´h Ring

#"+ µh X

#"> ȟ Hachek

Encoding example

#h+w#"8#"4l#"7^m#h- éêë ¨7l48w

TUSTEP - 311 - Basics

Russian (Cyrillic) alphabet

Start / End Russian #R+ / #R-

 a a A A a

 b b B B be

 v v V V ve

 g g G G ge

 d d D D de

 e e E E ye

 ^e 5 ^E % yo

 h h H H she

 z z Z Z ze

 i i I I i

 j j J J i kratkoye

 k k K K ka

 l l L L el

 m m M M em

 n n N N en

 o o O O o

 p p P P pe

 r r R R er

 s s S S es

 t t T T te

 u u U U u

 f f F F ef

 x x X X kha

 c c C C tse

 q q Q Q che

 w w W W sha

^w | ^W \ shcha

^p > ^P . yor, twerdyj znak

 y y Y Y ery

^b 2 ^B " yer, mjagkij znak

^a 1 ^A ! e oborotnoye

^u @ ^U 0 yu

^o = ^O - ya

^i 9 ^I) i s totschkoj

^y } ^Y] yat

Basics - 312 - TUSTEP

^f 6 ^F & fita

^v { ^V [izhitsa

Special Bulgarian characters

 ^w | ^W \ št

 ^p > ^P . ă

 ^z ~ ^Z ^ ǫ

Special Macedonian characters

 %/g ǵ %/G Ǵ ǵ

 %/k ḱ %/K Ḱ ḱ

 ^s ? ^S / dz

 ^j : ^J * j

 x x X X h

 ^l ; ^L + lj

 ^n < ^N , nj

 ^c 3 ^C # dž

Special Serbian characters

 ^d 4 ^D $ d̄

 ^j : ^J * j

 ^l ; ^L + lj

 ^n < ^N , nj

 ^h 8 ^H (ć

 x x X X h

 ^c 3 ^C # dž

TUSTEP - 313 - Basics

Special Ukranian characters

 g g G G h

 ^g 7 ^G ' je

 i i I I y

%:^i _̈ %:^I)̈ ı̈

 ^i 9 ^I) i

 à à -

Special characters in Belorussian

 g g G G h

 %)u ŭ %)U Ŭ ŭ

Accents

%) ŏ Semicircle (open at top)

%: ö Diaeresis

%/ ó Acute

%\ ò Grave

Basics - 314 - TUSTEP

Cyrillic (Church Slavonic) alphabet

Start / End Cyrillic font #C+ / #C-

 a a A A a Az

 b b B B b Buki

 v v V V v Vědi

 g g G G g Glagol à

 d d D D d Dobro

 e e E E e Est à

 ^g 6 ^G & e Est à

 h h H H ž Živ ěte

 ^s 9 ^S) dz Z ělo

 z z Z Z z Zemlja

 i i I I i I že

 j j J J i I

 k k K K k Kako

 l l L L l Ljudi

 m m M M m Myslite

 n n N N n Naš

 o o O O o On

 p p P P p Pokoj

 r r R R r Rci

 s s S S s Slovo

 t t T T t Tverdo

 ^u : ^U * u Uk

 f f F F f Fert

 x x X X ch Ch ěr

 ^o 7 ^O ' v Ó

 c c C C c Tsi

 q q Q Q č Tšerv à

 w w W W š Ša

 ^w ; ^W + št Šta

 ^p 8 ^P (Jer

#.^p ~ #.^P ^ y Jery

 ^b 2 ^B " Jerek

#.^b { #.^B [y Jery

 ^y = ^Y - ě Jet à

 #.a > #.A . ja Ja

 #.o ? #.O / ju Ju

TUSTEP - 315 - Basics

#.^g } #.^G] je Je

 ^e 4 ^E $ ę Ęs

 ^a 1 ^A ! ą Ąs

#.^e | #.^E \ ję Jęs

#.^a ` #.^A @ ją Jąs

 ^x < ^X , ks Ksi

 ^c 3 ^C # ps Psi

 ^f 5 ^F % u Fita

 u u U U ÿ I žica

Basics - 316 - TUSTEP

Syrian alphabet

 1st column: final letters (joined to the right)
 2nd column: central letters (joined to both sides)
 3rd column: initial letters (joined to the left)
 4th column: isolated letters

Start / End Syrian font: #Y+ / #Y-

^a ^A á Á Alef

^b b B ^B â b B Â Beth

^g g G ^G ç g G Ç Gomal

^d ^D ä Ä Dolath

^h ^H è È He

^u ^U õ Õ Vaw

^z ^Z ú Ú Zain

^x x X ^X ø x X Ø Khet

^j j J ^J ê j J Ê Teth

^i i I ^I é i I É Jud

^k k K ^K ë k K Ë Koph

^l l L ^L ì l L Ì Lomad

^m m M ^M í m M Í Mim

^n n N ^N î n N Î Nun

^s s S ^S ó s S Ó Semkath

^y y Y ^Y ù y Y Ù Ee

^p p P ^P ð p P Ð Pe

^c ^C ã Ã Sode

^q q Q ^Q ñ q Q Ñ Qoph

^r ^R ò Ò Ris

^w w W ^W ÷ w W × Sin

^t ^T ô Ô Tau

TUSTEP - 317 - Basics

Arabian alphabet

1. Spalte: final leters (joined to the right)
2. Spalte: medial letters (joined on both sides)
3. Spalte: initial letters (joined to the left)
4. Spalte: isolated letters

Start / End Arabian font: #A+ / #A-

^a ^A á Á ç/a Alif

^b b B ^B â b B Â b Bāç

^t t T ^T ô t T Ô t T āç

^o o O ^O ï o O Ï
¯
t

¯
Tāç

^j j J ^J ê j J Ê ǧ Ǧ̄ım

^h h H ^H è h H È
˙
h

˙
H̄aç

^x x X ^X ø x X Ø
˘
h

˘
H̄a

^d d ä d d Dāl

^D D Ä D
¯
d

¯
D̄al

^r r ò r r R āç

^R R Ò R z Zāy

^s s S ^S ó s S Ó s Sı̄n

^w w W ^W ÷ w W × š Šı̄n

^c c C ^C ã c C Ã
˙
s

˙
Sād

^g g G ^G ç g G Ç
˙
d

˙
D̄ad

^p p P ^P ð p P Ð
˙
t

˙
Tāç

^z z Z ^Z ú z Z Ú
˙
z

˙
Zāç

^y y Y ^Y ù y Y Ù æ æAin

^v v V ^V ö v V Ö ġ Ġain

^f f F ^F æ f F Æ f F āç

^q q Q ^Q ñ q Q Ñ q Q̄af

^k k K ^K ë k K Ë k Kāf

^l l L ^L ì l L Ì l L ām

^m m M ^M í m M Í m M̄ım

^n n N ^N î n N Î n Nūn

^e e E ^E å e E Å h Hāç

^u ^U õ Õ w/u W āw

^i i I ^I é i I É y/i Y āç

Basics - 318 - TUSTEP

Ligatures and special characters in Arabic

 A A Alif preceding L ām at start

of word

#.^f #.^F ¢] (fi) Ligature F ā-Y āç

#.^l #.^L ¥ { (li) Ligature L ām-Yāç

#.^x #.^X ¨ � (la) Ligature L ām-Alif

#.^A [Hamza (isolated)

#.i #.I + $ Hamza above Y āç

#.j #.J < % Hamza below Y āç

#.^u #.^U § ~ Hamza above W āw

#.^e #.^E ¡ \ Tāç marb ū
˙
ta

! ! Exclamation point

" " Quotation marks

à ' Apostrophe

, , Comma

. . Period

: : Colon

; ; Semicolon

? ? Question mark

Addition characters in Persian

#.^p #.p #.P #.^P ¦ > (| p Pe

#.^h #.h #.H #.^H £ * # ^ č Čim

#.^R #.R }) ž Že

#.^k #.k #.K #.^K ¤ = & _ g Ḡaf

TUSTEP - 319 - Basics

Vowel points and other diacritical marks in Arabic

a) above letters

%) ¬ Hamza

%/ ° Fat
˙
ha

%" ª Fat
˙
ha-Tanw ı̄n

%, ®
˙
Damma

%: ±
˙
Damma-Tanw̄ın

%* Suk ūn

%> ³ Ta šd ı̄d

%! © Alif

%? ´ Madda

%. ¯ Wa
˙
sla

%(« Suk ūn above ligature L ām-Alif

%\ µ Fat
˙
ha above ligature L ām-Alif

b) below letters

%))
Ý
 Hamza

%//
û
 Kasra

%\\
þ
 Kasra below ligature (to the right)

%;
ü
 Hamza + Kasra

%""
Ü
 Kasra-Tanw ı̄n

%;;
ý
 i dots for final Y āç

%,,
Þ
 i dots + Kasra for final Y āç

%àà
Û
 i dots + Kasra-Tanw ı̄n for final Y āç

Basics - 320 - TUSTEP

Notes for data preparation

The TUSTEP program features a specail macro, called #*CASH, used
to distinguish letters that are left-joined, joined on both
sides, right-joined, or isolated. When this macro is used, all
letters (except for

¯
D̄al and Z āy) need only to be entred as

lowercase letters. erfaßt zu werden. This also applied to
characters encoded with a "#.". For example, with this macro an
"a" can be entered instead of an "^A", and when entering Persian
letters, for example, "#.p" can be written instead of "#.^P".
In addition, this macro converts "al" located at the beginning
of a word to "Al" (in order to move the Alif closer to L ām).
The character combination "fi" and "li" (if not joined to the
left) as well as "la" will be automatically converted into the
codes for the corresponding ligatures.

Vowel points and other diacritical marks are to written before
the character above/under which they are to be set. If more than
one vowel point/diacritical mark are given for a single letter,
they are to be written in the order they would appear from top
to bottom.

Example: %;a%*b%/ra%//ei%,m %.al%/%>n%//b%,%>i

(or %;A%*b%/r^A%//Ei%,^m %.AL%/%>n%//b%,%>^i)

for ¹³
é
û
b
º³
nL
¯
A
®
íi
û
EÁ
°
ò

B
ü
A Ibr āh ı̄mu àn-nab ı̄yyu

TUSTEP - 321 - Basics

Phonetic symbols

The names used for the phonetic symbols are based on the
"Phonetic Symbol Guide" by Geoffrey K. Pullum and William A.
Ladusaw (Chicago 1986). If a letter itself is part of the name
used for it, the name will be inverted so that the letter is
located at the beginning of the name, with a comma marking the
point of inversion.

The name of each symbol is supplemented by a systematic phonetic
description of the symbol according to the conventions used by
the IPA (International Phonetic Association). The abbreviations
and terms used are:

first position:

sv semivowel
c consonant
v vowel

Vowels:

hi high
sem-hi semi-high (lower high)
up-mid upper-mid (higher mid)
mid mid
lo-mid lower-mid
sem-lo semi-low (higher low)
low low

back back
ce central
fr front
r rounded
unr unrounded

Consonants:

affr affricate lb-pal labial-palatal
alv alveolar lb-vel labiovelar
alv-pal alveolo-palatal lat lateral
appr approximant med-appr median approximant
asp aspirated nas nasal
bil bilabial pal palatal
click click pal-alv palato-alveolar
col coloration phar pharyngal
db-fr doubly articulated pl plosive

 fricative post-alv post-alveolar
dent dental rfl retroflex
flap flap tap tap
fric fricative trill trill
gl glottal uvu uvular
impl implosive v+ voiced
intd interdental v- voiceless
lab labial vel velar
lb-den labiodental

Basics - 322 - TUSTEP

Start / End phonetic symbols: #P+ / #P-

 i i i, lower case v hi fr unr

 I I iota v sem-hi fr unr

^i é i, barred v hi ce unr

^I É i umlaut v hi ce unr

 y y y, lower case v hi fr r

 Y Y y, small capital v sem-hi fr r

 u u u, lower case v hi back r

 U U upsilon v sem-hi back r

^u õ u barred v hi ce r

%:u ü u umlaut v hi ce r

^m í m, turned v hi back unr

^W × omega, closed v sem-hi back r

 e e e, lower case v up-mid fr unr

 E E epsilon v lo-mid fr unr

^e å schwa v mid ce unr

^E Å epsilon, reversed v lo-mid ce unr

 9 9 e, reversed v up-mid ce unr

 3 3 ash v sem-lo fr unr

%:3 3̈ ash umlaut v sem-lo back unr

 o o o, lower case v up-mid back r

 O O o, open v lo-mid back r

^o ï gamma, baby v up-mid back unr

^O Ï v, inverted v lo-mid back unr

%:o ö o umlaut v up-mid fr r

%:O Ö o umlaut, open v lo-mid fr r

 q q o, slashed v up-mid fr r

 Q Q o-e ligature v lo-mid fr r

^q ñ o, barred v up-mid ce r

^Q Ñ epsilon, closed reversed v lo-mid ce r

 a a a, lower case v low fr unr

 A A a, script v low back unr

^a á o-e ligature, small capital v lo-mid fr r

^A Á a, turned script v low back r

^3 ³ a, turned v sem-lo ce unr

^G Ç a, inverted v sem-lo ce unr

^v ö r with right tail, turned sv med-appr rfl

 V V v, script sv med-appr lb-den

TUSTEP - 323 - Basics

^y ù h, turned sv med-appr lb-pal

^M Í m with long right leg, turned sv med-appr vel

^R Ò r, turned sv med-appr post-alv

 w w w, lower case sv med-appr lb-vel

%:w ẅ w umlaut sv med-appr lb-vel ce

 p p p, lower case c pl bil v-

 b b b, lower case c pl bil v+

^p ð phi c fric bil v-

^b â beta c fric bil v+

 B B b, hooktop c impl bil

 t t t, lower case c pl alv v-

 d d d, lower case c pl alv v+

 T T theta c fric intd v-

^t ô eth c fric intd v+

^T Ô t-esh ligature c affr pal-alv v-

^D Ä d-yogh ligature c affr pal-alv v+

^d ä d, right-tail c pl rfl v+

 D D d, hooktop c impl alv

^K Ë t with right tail c pl rfl v-

 c c c, lower case c pl pal v-

 C C j, barred dotless c pl pal v+

^c ã c cedilla c fric pal v-

 k k k, lower case c pl vel v-

^k ë q, lower case c pl uvu v-

 g g g, lower case c pl vel v+

 G G g, small capital c pl uvu v+

^g ç g, hooktop c impl vel

 ? ? glottal stop c pl gl v-

 f f f, lower case c fric lb-den v-

 v v v, lower case c fric lb-den v+

^P Ð r with long leg c alv fric trill

 s s s, lower case c fric alv v-

 z z z, lower case c fric alv v+

 S S esh c fric pal-alv v-

 Z Z yogh c fric pal-alv v+

^s ó c, curly-tail c fric alv-pal v-

^z ú z, curly-tail c fric alv-pal v+

 6 6 esh, curly-tail c db-fr pal-alv v-

^6 ¶ yogh, curly-tail c db-fr pal-alv v+

Basics - 324 - TUSTEP

^S Ó s with right tail c fric rfl v-

^Z Ú z with right tail c fric rfl v+

 j j j, lower case c fric pal v+

^j ê j, superscript c col j

 x x x, lower case c fric vel v-

^x ø gamma c fric vel v+

 X X chi c fric uvu v-

^X Ø r, inverted small capital c fric uvu v+

 h h h, lower case c fric gl v-

 H H heng, hooktop c db-fr vel

^h è h, superscript c asp

^H È h, hooktop c fric gl v+

^F Æ h, crossed c fric phar v-

^? ¿ glottal stop, reversed c fric phar v+

 m m m, lower case c nas bil

 M M m with leftward tail at right c nas lb-den

 n n n, lower case c nas alv

^n î eng c nas vel

 N N n, small capital c nas uvu

^N Î n with leftward hook at left c nas pal

^9 ¹ n with right tail c nas rfl

 l l l, lower case c lat alv appr v+

^Y Ù y, turned c lat pal appr

^l ì l with tilde c lat vel alv appr

 1 1 l, belted c lat alv fric v-

 L L l with right tail c lat rfl appr

^L Ì l-yogh ligature c lat alv fric v+

 r r r, lower case c alv trill

^r ò r, fish-hook c alv tap

 R R r, small capital c uvu trill

 P P r with right tail c rfl flap

^V Ö r, turned long-legged c alv lat flap

 4 4 r, superscript c col r

^w ÷ w, subscript c lab

 W W w, inverted c db-fr lb-vel

 0 0 bull às eye c click bil

 5 5 glottal stop, inverted c click lat alv

^f æ t, turned c click dent

^C Ã C, stretched c click post-alv

TUSTEP - 325 - Basics

 " " quotation marks

 ((left parenthesis

)) right parenthesis

 < < left angle bracket

 [[left sqare bracket

]] right square bracket

 > > right angle bracket

 { { left curly bracket

 } } right curly bracket

 / / slash

 = = equals

 à ' apostrophe

^à § apostrophe, reversed

 * * asterisk

 , , comma

^@ @ comma turned

^7 · corner, left

 7 7 corner, right

 . . full stop

^. ® half-length mark

 : : length mark

^8 ¸ ligature, top

 8 8 ligature, bottom

^& & ligature, top and bottom

 2 2 lowering sign

 - - minus sign

 | | pipe (lower case height)

^\ \ pipe (upper case height)

^| ü pipe (full height)

 + + plus sign

^2 ² raising sign

 ; ; semicolon

^! ¡ stroke (inferior), vertical

 ! ! stroke (superior), vertical

^% % tilde

Basics - 326 - TUSTEP

%à �o nucleus stress

%) ŏ breve

%* o̊ over-ring

%- ō macron

%. ȯ over-dot

%/ ó acute accent

%: ö umlaut

%< ô circumflex

%> ǒ wedge

%? õ tilde, superscript

%[�o bridge, superscript

%\ ò grave accent

%{ �o half-ring superscript, left

%} �o half-ring superscript, right

%! �o palatalization hook

%!! �o right hook

%àà
�
o syllabicity mark

%**
˚
o under-ring

%--
¯
o under-bar

%..
˙
o under-dot

%; ¸ o cedilla

%;; ˛ o polish hook

%>>
ˇ
o wedge, subscript

%??
˜
o tilde, subscript

%[[
�
o bridge, subscript

%{{
�
o half-ring, subscript left

%}}
�
o half-ring, subscript right

%%(��oo ligature, long, top

%%- ��oo macron, long

%%)) ��oo ligature, long, bottom

%%-- ��oo underbar, long

TUSTEP - 327 - Basics

Display types, printed appearance

Start -- end bold: #F+ bzw. #F-

Start -- end cursive: #/+ bzw. #/-

Start -- end l e t t e r s p a c i n g : #S+ bzw. #S-

Start -- end SMALL CAPS: #K+ bzw. #K-

Start -- end Arabic: #A+ bzw. #A-

Start -- end Greek: #G+ bzw. #G-

Start -- end Hebrew: #H+ bzw. #H-

Start -- end Cyrillic (Church Slavonic): #C+ bzw. #C-

Start -- end Phonetic: #P+ bzw. #P-

Start -- end Russian (Cyrillic): #R+ bzw. #R-

Start -- end Syrian: #Y+ bzw. #Y-

Start -- end strikeout line: #0+ bzw. #0-

Start -- end single underlineing: #1+ bzw. #1-

Start -- end double underlining: #2+ bzw. #2-

Start -- end bold underlining: #3+ bzw. #3-

Start -- end dotted underlining: #4+ bzw. #4-

Start -- end subscript underlining: #5+ bzw. #5-

Start -- end superscript underlining: #6+ bzw. #6-

End all displays: #?-

Superscript and subscript

Raise 1/3 line above base line: #H:

Lower 1/3 line below base line: #T:

Raise 1/2 line above base line: #O:

Lower 1/2 line below base line: #U:

Return to base line: #G:

Note

Single characters (from the 7-bit TUSTEP character set) can also
be raised or lowered 1/3 of a line (either from the base line,
or in addition to their initial raised or lowered position) by
placing a "# à" (superscript) or "#," (subscript) in front of the
character.

Basics - 328 - TUSTEP

Availability of fonts on selected printers

Type line printer / screen with ... L / A G H K P R Y

ASCII ASCII character set O N - - - N - - -
DEUTSCH German character set O N - - - N - - -
EBCDIC EBCDIC character set O N - - - N - - -
DECMCS DEC multinational character set . O N - - - N - - -
IBM IBM-EBCDIC character set O N - - - N - - -
IBMPC IBM-PC character set O N - - - N - - -

Type dot matrix printers L / A G H K P R Y

PP IBM Proprinter and compatible . . + + - + + + - + -
LX EPSON LX... and compatible + + - + + + - + -
FX EPSON FX... and compatible + + - + + + - + -
LQ EPSON LQ... and compatible + + + + + + + + -

Typ laser printers L / A G H K P R Y

HP HP w/o font cartridge + N - - - N - - -
HP-10 HP with 10 cpi cartridge + + - - - + - - -
HP-12 HP with 12 cpi cartridge + + - - - + - - -
HP-GM HP with Greek + math. characters . + + - O - + - - -
HP-LP1 HP as line printer (160 * 64) . . . + N - - - N - - -
HP-LP2 HP as line printer (2 * 80 * 64) . + N - - - N - - -
HPDJ HP DeskJet + + + + + + + + +
HP+ HP PLUS w/o font cartridge + + + + + + + + +
HPII HP II and compatible + + + + + + + + +
PS-10 Postscript with 10 cpi font + + + + + + + + +
PS-12 Postscript with 12 cpi font + + + + + + + + +
PS-Q1 Postscript landscape single-column + + + + + + + + +
PS-Q2 Postscript landscape double-columns + + + + + + + + +
LN03-10 LN03 Laser printer, Courier 10 . . O N - O - N - - -
LN03-12 LN03 Laser printer, Elite 12 . . . O N - O - N - - -

Key to symbols:

 L Latin G Greek P Phonetic
 / Cursive H Hebrew R Russian
 A Arabic K Small caps Y Syrian

 + Font available
 - Font not available
 N Font not available; small caps will be written as uppercase

letters in the normal font; cursive characters will be
written as Roman characters.

 O Font available, but without accents.

Note

In order to determine which characters can be represented on a
specific printer, the TUSTEP character set can be printed out on
the selected printer with the command #MANUAL (see page 128).

TUSTEP - 329 - Basics

Alphabetical list of special characters

%< ô Accent circonflexe (above the letter)

%<<
ˆ
o Accent circonflexe (below the letter)

%/ ó Accent aigu (above the letter)

%//
´
o Accent aigu (below the letter)

%\ ò Accent grave (above the letter)

%\\
`
o Accent grave (below the letter)

#.^a æ ae ligature

#.^A Æ AE ligature

#(AEH) ! Similar

#.(æ Ajin, Ain (transcription symbol)

%/ ó Acute (above the letter)

%//
´
o Acute (below the letter)

#.) ç Alef (transcription character)

#.% å Alef, double (transcription symbol)

#.^d 7 Old/Middle English eth (lowercase)

#.^D D̄ Old/Middle English eth (uppercase)

#.z 6 Old/Middle English yogh (lowercase)

#.Z 2 Old/Middle English yogh (uppercase)

" " Quotes, double

#. à ” Quotes, double right

#., „ Quotes, double base

#.> » Guillemet, double

#.< « Guillement, double

#.: ì Guillement, single

#.; í Guillement, single

à à Apostrophe (raised comma)

%,
,
o Apostrophe, comma (above the letter)

^à â Apostrophe, inverted

Basics - 330 - TUSTEP

! ! Exclamation point

^! ¡ Exclamation point, inverted (Spanish)

_ Space, hard

^\ \ Backslash

^, \ Backslash

#(BSL) \ Backslash

\ Backslash (control character for discretionary

hyphen)

^/ Backslash (control character for discretionary

hyphen)

%- ō Bar, horizontal (above the letter)

%--
¯
o Bar, horizontal (below the letter)

_ Blank, (hard space)

%(
˘
o Semicircle above letter (open at bottom)

%((ŏ Semicircle below letter (open at bottom)

#(BML) Box: left intersection

#(BMM) Box: center intersection

#(BMR) Box: right intersection

#(BOL) Box: upper left corner

#(BOM) Box: upper intersection

#(BOR) Box: upper right corner

#(BUL) Box: lower left corner

#(BUM) Box: lower intersection

#(BUR) Box: lower right corner

%; ç Cedilla

#(CE) ¢ Cent

#(C) " Copyright

#.d d̄ d with cross-stroke (Serbo-Croatian d)

#.D D̄ D with cross-stroke (Serbo-Croatian D)

%< ô Circumflex (above the letter)

TUSTEP - 331 - Basics

%<<
ˆ
o Circumflex (below the letter)

#.o ø Danish ö (o slash)

#.O Ø Danish Ö (O slash)

#(DIV) + Division

^$ $ Dollar

$ $ Dollar (CTC for listing file)

#(DO) $ Dollar

%" ő Double acute (above the letter)

%""
˝
o Double acute (below the letter)

#.% å Double alef (transcription symbol)

: : Colon

#(DP) 3 Double stroke

#.< « Double quotes

#.> » Double quotes

#. à ” Double right quotes

#., „ Double base quotes

#(DEA) # Double left bracket

#(DEAG) $% Double left bracket (large)

#(DEZ) & Double right bracket

#(DEZG) '(Double right bracket (large)

#./ || Double vertical bar

#(DSS) || Double vertical bar

#(DF)) Triple stroke

#(DM) ,- Intersection

#(DMG) ./0
1 2 Intersection (large)

#(EOM) < Proper superset

#(ETM) = Proper subset

[[Bracket, left

^< [Bracket, left

#(EAG) 4
5 Bracket, left (large)

Basics - 332 - TUSTEP

#(DEA) # Bracket, left double

#(DEAG) $% Bracket, left double (large)

]] Bracket, right

^>] Bracket, right

#(EZG) >
? Bracket, right (large)

#(DEZ) & Bracket, right double

#(DEZG) '(Bracket, right double (large)

#(EF) 6 Single stroke

#.: ì Single quotes

#.; í Single quotes

^! ¡ Inverted exclamation point (Spanish)

^? ¿ Inverted question mark (Spanish)

#(EL) : Element

#(ENT) ; Corresponds to

#(EG) 78 There exists

#(EGE) 9 There exists (reverse E)

^& & Ampersand

& & Ampersand (CTC for listing file)

#.^d 7 Eth, Old/Middle English (lowercase)

#.^D D̄ Eth, Old/Middle English (uppercase)

#(FUE) C Varies as

_ Hard space

? ? Question mark

^? ¿ Question mark, inverted (Spanish)

; ; Question mark, Greek (located between #G+ and #G-)

? ; Question mark, Greek (located between #G+ and #G-)

#(FA) @A For all

#(FAA) B For all (inverted A)

#(GES) F Intersects

{ { Brace, left

TUSTEP - 333 - Basics

^({ Brace left

#(GAG) D
E Brace, left (large)

} } Brace, right

^) } Brace, right

#(GZG) J
K Brace, right (large)

= = Equals

#.* ˚ Degree

%\ ò Grave (above the letter)

%\\
`
o Grave (below the letter)

; ; Greek question mark (located between #G+ and #G-)

? ; Greek question mark (located between #G+ and #G-)

! ! Greek semicolon (located between #G+ and #G-)

#(GR) I Greater than

#(GGL) G Greater or equal (with -)

#(GGLD) H Greater or equal (with =)

#.^D D̄ Uppercase eth (Old/Middle English)

#.P 1 Uppercase Thorn (Islandic)

#.Z 2 Uppercase yogh (Old/Middle English)

%> ǒ Ha ček, caron (above the letter)

%>>
ˇ
o Ha ček, caron (below the letter)

%) ŏ Semicircle (top open) (above the letter)

%))
˘
o Semicircle (top open) (under the letter)

#àx x Superscript character

^1 1 Superscript digit, small

à à Raised comma (apostrophe)

#.i ı I, dotless (Turkish i)

#(ID) L Equivalent

#.j 3 ij ligature

#.J 0 IJ ligature

#(INT) M Integral

Basics - 334 - TUSTEP

#(INTG) N
OP Integral (large)

#(IW) ¤ International currency symbol

#.p 4 Islandic thorn (lowercase)

#.P 1 Islandic Thorn (uppercase)

#(KP) V Cartesian product

#(KPG) WX
YZ Cartesian product (large)

^@ @ At

@ @ At (CTC for listing file)

^1 1 Small superscript digit

#(KL) U Less than

#(KGL) Q Less or equal (with -)

#(KGLD) R Less or equal (with =)

#.^d 7 Lowercase eth (Old/Middle English)

#.p 4 Lowercase thorn (Islandic)

#.z 6 Lowercase yogh (Old/Middle English)

, , Comma

%,, ,o Comma (above the letter)

%,
,
o Comma, Apostrophe (above the letter)

#(KGR) S Congruent (with -)

#(KGRD) T Congruent (with =)

%* o̊ Ring (above the letter)

%**
˚
o Ring (below the letter)

%;; ǫ Ogonek, hook (under the letter)

#(MKLS) b Short or long syllable (meter)

#(MKS) a Short syllable (meter)

#.l ł l slash (Polish l)

#.L Ł L slash (Polish L)

#(MLS) c Long syllable (meter)

^| Long vertical bar

^; Long vertical bar

TUSTEP - 335 - Basics

^- Long minus sign

#.s 5 Long s

#.z 6 Long z

#(LM) [Empty set

#.^a æ Ligature ae

#.^A Æ Ligature AE

#.j 3 Ligature ij

#.J 0 Ligature IJ

#.^o œ Ligature oe

#.^O Œ Ligature OE

#(LN) \ Logical Not

#(LO)] Logical Or

#(LU) ^ Logical And

^* ã Multiply x

#(MKR) ` Multiply x

^. · Multiply dot

#(MPU) · Multiply dot

#(MC) _ Set C

#(MN) d Set N

#(MQ) f Set Q

#(MR) g Set R

#(MZ) h Set Z

#(LM) [Set, empty

#(MKLS) b Meter: short or long syllable

#(MKS) a Meter: Short syllable

#(MLS) c Meter: Long syllable

#(MPL) e Minus or Plus

- - Minus sign

^- Minus sign, long

#.- è Minute

Basics - 336 - TUSTEP

#(NBL) i Gradient

#(LN) \ Negation (logical Not)

#(NEL) j Not an element

#(NID) k Not identical (with /)

#(NIDS) l Not identical (with |)

#(NOM) m Not superset

#(NTM) n Not subset

#(LN) \ Not, logical

^# # Number

Number (CTC for special characters)

#.o ø o slash (Danish ö)

#.O Ø O slash (Danish Ö)

#(EOM) < Superset, proper

#(UOM) Ã Superset, reflex

#(LO)] Or, logical

#.^o œ oe ligature

#.^O Œ OE ligature

%;; ǫ Ogonek, hook (below the letter)

#.! § Section

#(PA) § Section

#(PFB) pq Arrow pointing left and right

#(PFBD) rs Arrow pointing left and right (double)

#(PFL) tu Arrow pointing left

#(PFLD) vw Arrow pointing left (double)

#(PFO) z Arrow pointing up

#(PFOL) {| Arrow pointing upper left

#(PFR) ¡¢ Arrow pointing upper left

#(PFRD) £¤ Arrow pointing right (double)

#(PFU) ¥ Arrow pointing down

#(PFLR) xy Arrows pointing left and right

TUSTEP - 337 - Basics

#(PFOO) } Arrows pointing up, two

#(PFOU) ~ Arrows pointing up and down

#(PF) £ Pound sterling

#(PLM) ¦ Plus or Minus

+ + Plus

#.l ł Polish l (l slash)

#.L Ł Polish L (L slash)

#(PR) §¨ Product

#(PRG) ©ª«
¬ Product (large)

#(PRM) ® Per thousand

^% % Percent

% % Percent (CTC for accent marks)

#(P) o Published

. . Period

%. ȯ dot (above the letter)

%..
˙
o Dot (below the letter)

%- ō Macron, horiz. bar (above the letter)

%--
¯
o Macron, horiz. bar (below the letter)

#(R) ¯ Registered

%* o̊ Ring (above the letter)

%**
˚
o Ring (below the letter)

^= ä Bullet

((Parenthesis, left

#(RAG) °
± Parenthesis, left (large)

)) Parenthesis, right

#(RZG) ²
³ Parenthesis, right (large)

^s ß Double s (German)

^" á Filled box

/ / Slash

#.= î Second

Basics - 338 - TUSTEP

! ! Semicolon, Greek (when placed between #G+ and #G-)

#(SR) ´ Perpendicular

| | Vertical bar

^: | Vertical bar

#./ || Vertical bar, double

#(DSS) || Vertical bar, double

^| Vertical bar, long

^; Vertical bar, long

#.d d̄ Serbo-Croatian d (d with cross-stroke)

#.D D̄ Serbo-Croatian D (D with cross-stroke)

^! ¡ Spanish exclamation point

^? ¿ Spanish question mark

< < Angle bracket, left

> > Angle bracket, right

^+ † Dagger

* * Asterisk

#./ || Bar, double vertical

#(DSS) || Bar, double vertical

| | Bar, vertical

; ; Semicolon

#(SUM) µ¶ Summation

#(SUMG) ·¸¹º»¼ Summation (large)

#(ETM) = Subset, proper

#(UTM) Ä Subset, reflex

#.p 4 Thorn, Islandic (lowercase)

#.P 1 Thorn, Islandic (uppercase)

#,x
x
 Subscript characters

%? õ Tilde (above the letter)

%??
˜
o Tilde (below the letter)

%: ö Diaeresis (above the letter)

 - 339 -

%::
¨
o Diaeresis (below the letter)

#.i ı Turkish i (dotless)

#;x x o Superior character

^à â Inverse apostrophe

^a ä Umlaut ä

^A Ä Umlaut Ä

^o ö Umlaut ö

^O Ö Umlaut Ö

^u ü Umlaut ü

^U Ü Umlaut Ü

#(LU) ^ And, logical

#(UOM) Ã Reflex superset

#(UTM) Ä Reflex subset

#(UE) ½ Infinite

#(UGF) ¾ Approximately equal

#(UGR) Á Approximately greater than

#(UKL) Â Approximately less than

#(UGL) ¿ Not equal (with /)

#(UGLS) À Not equal (with |)

#!x
x
 o Inferior character

^_ _ Underline

_ Underline (CTC for hard space)

#(VER) Å Union

#(VM) ÆÇ Union

#(VMG) È É
ÊËÌ Union (large)

#.. éêë Reference arrow

#(IW) ¤ Currency, international

#(WI) Í Angle

#.[ï Upper left corner

#.] ð Upper right corner

Basics - 340 - TUSTEP

#(WU) Î Radical

#(WUG) ÏÐ
Ñ Radical (large)

#.z 6 Yogh, Old/Middle English (lowercase)

#.Z 2 Yogh, Old/Middle English (uppercase)

^1 1 Digits, small superscript

%< ô Circumflex (above the letter)

%<<
ˆ
o Circumflex (below the letter)

#(ZWR) Ò Intervening space

TUSTEP - 341 - Basics

 C o d e t a b l e s

Basics - 342 - TUSTEP

Survey:

General remarks . 343

ASCII code tables . 345

 1. Internal TUSTEP code 345
 2. International ASCII code for comparison 345
 3. Code "GERMAN" for display devices with German keyboard 346
 4. Code "IBMPC" for screen display on IBM-compatible PCs 347
 5. Code "CP437" for screen display on IBM-compatible PCs 348
 6. Code "CP850" for screen display on IBM-compatible PCs 349
 7. Code "DECMCS" for VT100 (and compatible) terminals 350
 8. Code "ISO8859" for XTERM windows (in X-Windows) . . 351

EBCDIC code tables 352

 1. Internal TUSTEP code 352
 2. International EBCDIC code for comparison 352
 3. Code "GERMAN" for display devices with German keyboard 353
 4. Code "EBCDIC" for display devices with US EBCDIC keyboard
 . 353

TUSTEP code conversion from ASCII to EBCDIC 354

TUSTEP code conversion from EBCDIC to ASCII 354

Standard sort order in TUSTEP 355

TUSTEP - 343 - Basics

General remarks

a) Concerning the character code used in TUSTEP

The input and internal representation of a single character in
TUSTEP are based on the international ASCII code (DIN 660003,
International Reference Version = 7-bit code according to the
ISO-norm 646).

To make sure that all accent marks are coded in a unified
manner, the ASCII characters grave accent, circumflex and tilde
(in hexadecimal code 60, 5E and 7E) are not used for this
purpose. However, the ASCII grave accent character is used in
the Editor as a marker character on the screen and may therefore
not occur in the data. The ASCII circumflex character is used as
a shift character.

For more efficient use of comptuer storage space, the 7-bit
ASCII-code has been extended to 8 bits. Characters marked by a
preceding "^" (e.g. ^a for ä) on data input are internally
represented by setting the 8th bit. The few exceptions to this
are described below.

Some keyboards do not feature the characters: vertical bar,
backslash, square brackets and curly brackets (braces). In their
place, the following substitute codes have been selected.

^: vertical bar ^/ backslash (control
character)

^< left square bracket ^(left brace
^> right square bracket ^) right brace

The characters "long vertical bar" and "backslash" (represented
as printed characters, not as control characters) are normally
endoded as "^|" and "^\", respectively. Substitute codes are
also available for keyboards lacking these characters, which are
thus entered as:

^; long vertical bar ^, backslash

Not every internal code which can be generated by marking a
character with "^" corresponds to a printable character. For
example, "^m" does not correspond to any character in the Latin
alphabet, whereas in the Hebrew alphabet it represents the
"final Mem".

The international EBCDIC code is the basis for the internal
representation of characters in TUSTEP under IBM operating
systems. This is the code which results from converting ASCII
into EBCDIC based on the conversion table used by the IBM
operating system MVS when reading ASCII tapes (cf. IBM: MVS/370
Magnetic Tape Labels and File Structure Administration).

Basics - 344 - TUSTEP

b) Concerning the code tables The following tables have been
organized separately according to operating systems using the
ASCII code and those using the EBCDIC code. The ASCII code is
used in TUSTEP versions running under

 DOS, UNIX and VMS

while the EBCDIC code is used for the

BS2000, MVS und VM/CMS versions.

The first table shows the codes in which the characters of the
"7-bit TUSTEP character set" and the "8-bit TUSTEP character
set" (see page 298 and 299) are stored in files. All other
TUSTEP characters are stored as a combination of characters from
the 7-bit and 8-bit TUSTEP character set.

The second table has been provided merely for reference purposes
and has no further significance when using TUSTEP.

The remaining tables show the various codes for screen
input/output as set with the command #DEFINE (see page 83).
Under certain circumstances they are also used to convert
character codes when importing data from SYSTEM files and
exporting data to SYSTEM files with the command #CONVERT (see
page 70). This code setting has no influence on the code in
which the data in TUSTEP files have been stored.

TUSTEP - 345 - Basics

ASCII code tables

1. Internal TUSTEP code

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP 0 @ P p ^0 ^@ ^P ^p 00
 01 ! 1 A Q a q ^! ^1 ^A ^Q ^a ^q 01
 02 " 2 B R b r ^" ^2 ^B ^R ^b ^r 02
 03 # 3 C S c s ^# ^3 ^C ^S ^c ^s 03
 04 $ 4 D T d t ^$ ^4 ^D ^T ^d ^t 04
 05 % 5 E U e u ^% ^5 ^E ^U ^e ^u 05
 06 & 6 F V f v ^& ^6 ^F ^V ^f ^v 06
 07 à 7 G W g w ^ à ^7 ^G ^W ^g ^w 07
 08 (8 H X h x ^8 ^H ^X ^h ^x 08
 09) 9 I Y i y ^9 ^I ^Y ^i ^y 09
 0A * : J Z j z ^* ^J ^Z ^j ^z 0A
 0B + ; K [k { ^+ ^K ^[^k 0B
 0C , < L \ l | ^L ^\ ^l ^| 0C
 0D - = M] m } ^- ^= ^M ^] ^m 0D
 0E . > N ^ n ^. ^N ^n 0E
 0F / ? O _ o ^? ^O ^_ ^o 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

2. International ASCII code for comparison

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP 0 @ P ̀ p 00
 01 ! 1 A Q a q 01
 02 " 2 B R b r 02
 03 # 3 C S c s 03
 04 $ 4 D T d t 04
 05 % 5 E U e u 05
 06 & 6 F V f v 06
 07 à 7 G W g w 07
 08 (8 H X h x 08
 09) 9 I Y i y 09
 0A * : J Z j z 0A
 0B + ; K [k { 0B
 0C , < L \ l | 0C
 0D - = M] m } 0D
 0E . > N ^ n ̃ 0E
 0F / ? O _ o 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

60=grave 7E=tilde

Basics - 346 - TUSTEP

3. Code "GERMAN" on display devices with German keyboard

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP 0 @ P ̀ p 00
 01 ! 1 A Q a q 01
 02 " 2 B R b r 02
 03 # 3 C S c s 03
 04 $ 4 D T d t 04
 05 % 5 E U e u 05
 06 & 6 F V f v 06
 07 à 7 G W g w 07
 08 (8 H X h x 08
 09) 9 I Y i y 09
 0A * : J Z j z 0A
 0B + ; K Ä k ä 0B
 0C , < L Ö l ö 0C
 0D - = M Ü m ü 0D
 0E . > N ^ n ß 0E
 0F / ? O _ o 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

60=grave

TUSTEP - 347 - Basics

4. Code "IBMPC" for screen display on IBM compatible PCs

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

 00 SP 0 @ P p 00

 01 ! 1 A Q a q ü ß 01

 02 " 2 B R b r 02

 03 # 3 C S c s 03

 04 $ 4 D T d t ä ö 04

 05 % 5 E U e u 05

 06 & 6 F V f v 06

 07 à 7 G W g w 07

 08 (8 H X h x ¿ 08

 09) 9 I Y i y Ö 09

 0A * : J Z j z Ü · 0A

 0B + ; K [k { 0B

 0C , < L \ l | 0C

 0D - = M] m } ¡ 0D

 0E . > N ^ n Ä 0E

 0F / ? O _ o 0F

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

The code "IBMPC" contains

- all characters of the 7-bit TUSTEP character set

- all characters of the 8-bit TUSTEP character also found in the
extended ASCII code for IBM compatible PCs.

Basics - 348 - TUSTEP

5. Code "CP437" for screen display on IBM compatibler PCs

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

 00 SP 0 @ P p Ç É á L 00

 01 ! 1 A Q a q ü æ ı́ ß ¦ 01

 02 " 2 B R b r é Æ ó G 02

 03 # 3 C S c s â ô ú Q 03

 04 $ 4 D T d t ä ö ñ 04

 05 § % 5 E U e u à ò Ñ 05

 06 & 6 F V f v å û + 06

 07 à 7 G W g w ç ù ¾ 07

 08 (8 H X h x ê ÿ ¿ 08

 09) 9 I Y i y ë Ö 09

 0A * : J Z j z è Ü \ || · 0A

 0B + ; K [k { ı̈ ¢ Î 0B

 0C , < L \ l | ı̂ £ ½ 0C

 0D - = M] m } ı̀ ¡ 0D

 0E . > N ^ n Ä « 0E

 0F / ? O _ o Å » 0F

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

The code "CP437" contains

- all characters of the 7-bit TUSTEP character set

- all characters of the 8-bit TUSTEP character set which are
also defined in code page 437 (see your DOS manual).

- accented letters defined in code page 437.

- all characters encoded with the control character "#" and
"#(name)" and which are also defined in code page 437.

TUSTEP - 349 - Basics

6. Code "CP850" for screen display on IBM compatible PCs

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

 00 SP 0 @ P p Ç É á 7 Ó 00

 01 ! 1 A Q a q ü æ ı́ D̄ ß ¦ 01

 02 " 2 B R b r é Æ ó Ê Ô 02

 03 # 3 C S c s â ô ú Ë Ò 03

 04 $ 4 D T d t ä ö ñ È õ 04

 05 % 5 E U e u à ò Ñ Á Õ § 05

 06 & 6 F V f v å û Â ã Í + 06

 07 à 7 G W g w ç ù À Ã Î 4 07

 08 (8 H X h x ê ÿ ¿ " Ï 1 08

 09) 9 I Y i y ë Ö ¯ Ú 09

 0A * : J Z j z è Ü \ || Û · 0A

 0B + ; K [k { ı̈ ø Ù 0B

 0C , < L \ l | ı̂ £ ý 0C

 0D - = M] m } ı̀ Ø ¡ ¢ Ý 0D

 0E . > N ^ n Ä ã « Ì 0E

 0F / ? O _ o Å » ¤ 0F

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

The code "CP850" contains

- all characters of the 7-bit TUSTEP character set

- all characters of the 8-bit TUSTEP character set that are also
defined in code page 850 (see your DOS manual).

- accented letters defined in code page 850. sind

- all characters encoded with the control characters "#" and
"#(name)" and which are also defined in code page 850.

Basics - 350 - TUSTEP

7. Code "DECMCS" für VT100 (and compatible) terminals

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

 00 SP 0 @ P p ˚ À à 00

 01 ! 1 A Q a q ¡ ¦ Á Ñ á ñ 01

 02 " 2 B R b r ¢ Â Ò â ò 02

 03 # 3 C S c s £ Ã Ó ã ó 03

 04 $ 4 D T d t Ä Ô ä ô 04

 05 % 5 E U e u Å Õ å õ 05

 06 & 6 F V f v Æ Ö æ ö 06

 07 à 7 G W g w § · Ç Œ ç œ 07

 08 (8 H X h x ¤ È Ø è ø 08

 09) 9 I Y i y " É Ù é ù 09

 0A * : J Z j z Ê Ú ê ú 0A

 0B + ; K [k { « » Ë Û ë û 0B

 0C , < L \ l | Ì Ü ı̀ ü 0C

 0D - = M] m } Í Ÿ ı́ ÿ 0D

 0E . > N ^ n Î ı̂ 0E

 0F / ? O _ o ¿ Ï ß ı̈ 0F

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

The code "DECMCS" contains

- all characters of the 7-bit TUSTEP character set

- all characters of the 8-bit TUSTEP characters set that are
also defined in the "DEC Multinational Character Set" (see
your VT100 manual).

- Accented letters defined in the "DEC Multinational Character
Set".

- all characters encoded with the control characters "#" and
"#(name)" and also defined in the "DEC Multinational Character
Set".

TUSTEP - 351 - Basics

8. Code "ISO8859" for XTERM windows (in X-Windows)

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

 00 SP 0 @ P p ˚ À D̄ à 7 00

 01 ! 1 A Q a q ¡ ¦ Á Ñ á ñ 01

 02 " 2 B R b r ¢ Â Ò â ò 02

 03 # 3 C S c s £ Ã Ó ã ó 03

 04 $ 4 D T d t ¤ Ä Ô ä ô 04

 05 % 5 E U e u Å Õ å õ 05

 06 & 6 F V f v Æ Ö æ ö 06

 07 à 7 G W g w § · Ç ã ç + 07

 08 (8 H X h x È Ø è ø 08

 09) 9 I Y i y " É Ù é ù 09

 0A * : J Z j z Ê Ú ê ú 0A

 0B + ; K [k { « » Ë Û ë û 0B

 0C , < L \ l | \ Ì Ü ı̀ ü 0C

 0D - = M] m } Í Ý ı́ ý 0D

 0E . > N ^ n ¯ Î 1 ı̂ 4 0E

 0F / ? O _ o ¿ Ï ß ı̈ ÿ 0F

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

Basics - 352 - TUSTEP

EBCDIC code tables

1. Internal TUSTEP code

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP & - ^C ^J ^Q ^X { } \ 0 00
 01 / a j ^Y A J 1 01
 02 ^! ^* ^2 b k s ^Z B K S 2 02
 03 ^" ^+ ^3 ^= c l t ^[C L T 3 03
 04 ^# ^4 d m u ^\ D M U 4 04
 05 ^$ ^- ^5 ^? e n v ^] E N V 5 05
 06 ^% ^. ^6 ^@ f o w F O W 6 06
 07 ^& ^7 ^A g p x ^_ G P X 7 07
 08 ^ à ^0 ^8 ^B h q y H Q Y 8 08
 09 ^1 ^9 i r z ^a I R Z 9 09
 0A [] | : ^D ^K ^R ^b ^h ^n ^t ^z 0A
 0B . $, # ^E ^L ^S ^c ^i ^o ^u 0B
 0C < * % @ ^F ^M ^T ^d ^j ^p ^v ^| 0C
 0D () _ à ^G ^N ^U ^e ^k ^q ^w 0D
 0E + ; > = ^H ^O ^V ^f ^l ^r ^x 0E
 0F ! ^ ? " ^I ^P ^W ^g ^m ^s ^y 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

2. International EBCDIC code for comparison

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP & - { } \ 0 00
 01 / a j ̃ A J 1 01
 02 b k s B K S 2 02
 03 c l t C L T 3 03
 04 d m u D M U 4 04
 05 e n v E N V 5 05
 06 f o w F O W 6 06
 07 g p x G P X 7 07
 08 h q y H Q Y 8 08
 09 ̀ i r z I R Z 9 09
 0A [] | : 0A
 0B . $, # 0B
 0C < * % @ 0C
 0D () _ à 0D
 0E + ; > = 0E
 0F ! ^ ? " 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

79=grave A1=tilde

TUSTEP - 353 - Basics

3. Code "GERMAN" for display devices with a German keyboard

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP & - ä ü Ö 0 00
 01 / a j ß A J 1 01
 02 b k s B K S 2 02
 03 c l t C L T 3 03
 04 d m u D M U 4 04
 05 e n v E N V 5 05
 06 f o w F O W 6 06
 07 g p x G P X 7 07
 08 h q y H Q Y 8 08
 09 ̀ i r z I R Z 9 09
 0A Ä Ü ö : 0A
 0B . $, # 0B
 0C < * % @ 0C
 0D () _ à 0D
 0E + ; > = 0E
 0F ! ^ ? " 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

79=grave

4. Code "EBCDIC" for display devices with a US EBCDIC keyboard

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 SP & - { } \ 0 00
 01 / a j ̃ A J 1 01
 02 b k s B K S 2 02
 03 c l t C L T 3 03
 04 d m u D M U 4 04
 05 e n v E N V 5 05
 06 f o w F O W 6 06
 07 g p x G P X 7 07
 08 h q y H Q Y 8 08
 09 ̀ i r z I R Z 9 09
 0A ¢ ! | : 0A
 0B . $, # 0B
 0C < * % @ 0C
 0D () _ à 0D
 0E + ; > = 0E
 0F | \ ? " 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

79=brave 4A=cent 5F=log.Not 6A=broken line A1=tilde

Basics - 354 - TUSTEP

TUSTEP code conversion from ASCII to EBCDIC

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 00 10 40 F0 7C D7 79 97 20 30 41 58 76 9F B8 DC 00
 01 01 11 4F F1 C1 D8 81 98 21 31 42 59 77 A0 B9 DD 01
 02 02 12 7F F2 C2 D9 82 99 22 1A 43 62 78 AA BA DE 02
 03 03 13 7B F3 C3 E2 83 A2 23 33 44 63 80 AB BB DF 03
 04 37 3C 5B F4 C4 E3 84 A3 24 34 45 64 8A AC BC EA 04
 05 2D 3D 6C F5 C5 E4 85 A4 15 35 46 65 8B AD BD EB 05
 06 2E 32 50 F6 C6 E5 86 A5 06 36 47 66 8C AE BE EC 06
 07 2F 26 7D F7 C7 E6 87 A6 17 08 48 67 8D AF BF ED 07
 08 16 18 4D F8 C8 E7 88 A7 28 38 49 68 8E B0 CA EE 08
 09 05 19 5D F9 C9 E8 89 A8 29 39 51 69 8F B1 CB EF 09
 0A 25 3F 5C 7A D1 E9 91 A9 2A 3A 52 70 90 B2 CC FA 0A
 0B 0B 27 4E 5E D2 4A 92 C0 2B 3B 53 71 9A B3 CD FB 0B
 0C 0C 1C 6B 4C D3 E0 93 6A 2C 04 54 72 9B B4 CE FC 0C
 0D 0D 1D 60 7E D4 5A 94 D0 09 14 55 73 9C B5 CF FD 0D
 0E 0E 1E 4B 6E D5 5F 95 A1 0A 3E 56 74 9D B6 DA FE 0E
 0F 0F 1F 61 6F D6 6D 96 07 1B E1 57 75 9E B7 DB FF 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

TUSTEP code conversion from EBCDIC to ASCII

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
| |

 00 00 10 80 90 20 26 2D BA C3 CA D1 D8 7B 7D 5C 30 00
 01 01 11 81 91 A0 A9 2F BB 61 6A 7E D9 41 4A 9F 31 01
 02 02 12 82 16 A1 AA B2 BC 62 6B 73 DA 42 4B 53 32 02
 03 03 13 83 93 A2 AB B3 BD 63 6C 74 DB 43 4C 54 33 03
 04 9C 9D 84 94 A3 AC B4 BE 64 6D 75 DC 44 4D 55 34 04
 05 09 85 0A 95 A4 AD B5 BF 65 6E 76 DD 45 4E 56 35 05
 06 86 08 17 96 A5 AE B6 C0 66 6F 77 DE 46 4F 57 36 06
 07 7F 87 1B 04 A6 AF B7 C1 67 70 78 DF 47 50 58 37 07
 08 97 18 88 98 A7 B0 B8 C2 68 71 79 E0 48 51 59 38 08
 09 8D 19 89 99 A8 B1 B9 60 69 72 7A E1 49 52 5A 39 09
 0A 8E 92 8A 9A 5B 5D 7C 3A C4 CB D2 E2 E8 EE F4 FA 0A
 0B 0B 8F 8B 9B 2E 24 2C 23 C5 CC D3 E3 E9 EF F5 FB 0B
 0C 0C 1C 8C 14 3C 2A 25 40 C6 CD D4 E4 EA F0 F6 FC 0C
 0D 0D 1D 05 15 28 29 5F 27 C7 CE D5 E5 EB F1 F7 FD 0D
 0E 0E 1E 06 9E 2B 3B 3E 3D C8 CF D6 E6 EC F2 F8 FE 0E
 0F 0F 1F 07 1A 21 5E 3F 22 C9 D0 D7 E7 ED F3 F9 FF 0F

| |
 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

 - 355 -

Standard sort order in TUSTEP

In the table below, the individual characters are listed in the
standard ascending order in which they are sorted (i.e. unless
otherwise specified by using parameters). Character adjacent to
one another in the same column will be treated equally.

 1: SP 11: * ^* 21: > 31: }

 2: ! ^! 12: + ^+ 22: ? ^? 32: 0 ^0

 3: " ^" 13: , 23: @ ^@ 33: 1 ^1

 4: # ^# 14: - ^- 24: [^[...

 5: $ ^$ 15: . ^. 25: \ ^\ 41: 9 ^9

 6: % ^% 16: / 26:] ^] 42: a ^a A ^A

 7: & ^& 17: : 27: ^ 43: b ^b B ^B

 8: à ^ à 18: ; 28: _ ^_ ...

 9: (19: < 29: { 67: z ^z Z ^Z

 10:) 20: = ^= 30: | ^|

Basics - 356 - TUSTEP

TUSTEP - 357 - Basics

 A p p e n d i x

Basics - 358 - TUSTEP

TUSTEP - 359 - Basics

Using the PC as a terminal

A PC can be employed as a terminal for a work station or
mainframe. If TUSTEP is also worked with in this type of local
network, it is vital that a matching keyboard layout is used in
both of these situations. This means that the respective
terminal emulation program must be configured appropriately. Yet
not all such programs are flexible enough to provide a
completely identical keyboard layout.

One widely-used terminal program is KERMIT. It is capable of
handling asynchronous connections as well as connections via
Ethernet. With KERMIT, the keyboard layout can be so defined
that there are no differences to the one used when working with
TUSTEP on a PC.

Each TUSTEP version for a work station or a mainframe features
the file "kermit.dos", which contains the necessary definitions
for the keyboard layout. This file can be copied to the PC. The
TUSTEP keyboard layout can then be activated with the KERMIT
command "take kermit.dos". This command can also be written at
the end of the file "mskermit.ini" so that it will be
automatically executed each time KERMIT is called up.

The file "kermit.dos" must match the TUSTEP version being used
at the workstation or mainframe. This file is therefore not
included in the DOS version of TUSTEP. Users should note that
this file may change with a new version of TUSTEP. Should any
problems with the keyboard layout arise, it may due to the fact
that the latest version of this file has not been installed on
the PC.

If a PC is used to run TUSTEP on another computer via a terminal
emulation program, usually the same code can be set as that used
when working on the PC locally. For more details, refer to the
notes regarding code settings as outlined in the command #DEFINE
on page 83.

 - 360 -

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 C O L L A T E

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

COLLATE - 362 - TUSTEP

Survey:

Command . 363

 Specifications 363
 Features 363

 General remarks 364

 Mode=-STD- 364
 Mode=CUMULATED 364

Parameters 365

 Selecting data 365
 Parameters for LISTING file settings 365
 Defining line-by-line synoptic output format 367

Alphabetical list of parameters 369

TUSTEP - 363 - COLLATE

Command:

#COLLATE

Specifications:
SOURCE = file Name of the input file containing the

basic text

MODE = -STD- * Each CORRECTION file contains the
correcting instructions for a single text
version

= CUMULATED The CORRECTION file contains all
correcting instructions for all individual text versions.

ERASE = - * If the LISTING file already contains
data, they are to be retained.

= + If the LISTING file already contains
data, they are to be erased beforehand.

PARAMETER = file Name of the file with the parameters

= * Parameters follow the command line and
are ended by *EOF

CORRECTION = file Name of the file containing the
correcting instructions (with correction
key); for MODE=-STD- more than one file
name is allowed.

LISTING = -STD- * The generated listing is to be written
into the standard LISTING file.

= file Name of the file to which the generated
listing is to be written

Features:

With this command, a listing of the differences between one or
several text versions and a basic text can be generated for
printing in lines synoptic to the basic text. The differences
must be provided in form of correcting instructions containing a
correction key, as generated by the TUSTEP programs COMPARE
and/or PRESORT. The deviant words (variants of the different
text versions) are listed in synoptical lines under the
respective words of the basic text. Identities between the basic
text and the other text versions as well as between the variants
themselves will be marked.

COLLATE - 364 - TUSTEP

General remarks

In order to obtain an overview of the differences (variants)
contained in several versions of the same basic text, it can be
helpful to collate them into a single list. The differences
contained in these versions must be present in the form of
correcting instructions including a correction key as generated
by the TUSTEP programs COMPARE or PRESORT.

The imput for the program COLLATE are the file containing the
basic text and the file(s) containing the variants. Differences
are marked in the form of correcting instructions. These
correcting instructions must contain a correction key.

The LISTING file will successively list a single line of basic
text, followed by the corresponding text of the other text
versions. In this list, for each line of the the basic text in
which variants have been detected, the variant text is located
under the corresponding word or phrase of the basic text. Words
which are identical both in the basic text and in the other
versions - or words which have identical versions - are marked
as such.

Furthermore, if a certain wording is identical in different
versions, subsequent occurrences of this wording can be replaced
by a reference to the version in which it first appeared.

MODE=-STD-

In this mode, all correcting instructions for each text version
are located in a file of their own. Up to 9 files may be
specified. The order in which lines containing variants from the
basic text will appear depends on the order in which the
respective files are specified.

MODE=CUMULATED

In this mode, all correcting instructions for the individual
text versions (max. 49) are located in a single file. The
correcting instructions must be sorted in ascending order
according to the correction key. Parameter SW must specify the
sorting values of those text versions that are to be collated.
The order in which lines containing variants from the basic text
will appear depends on the order in which the sorting values
have been specified. In addition, parameter VKZ must provide an
identification code for all text versions specified by parameter
SW.

TUSTEP - 365 - COLLATE

Parameters

Values given in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics". Default values are shown in < >.

Selecting data

If the entire input data are to be processed, none of the
following parameters need to be specified.

In case only a certain portion of the basic text is to be
processed, this can be defined by the following parameters.

BER Specifies an area ("page.line-page.line") or an
initial position ("page.line") if the basic text is
not to be processed in its entirety. [XI]

MAX For trial runs, this specifies the maximum number of
lines in the basic text that are to be processed. [I]
<999999>

Parameters for LISTING file settings

Of the following parameters, parameter DRT must always be
specified.

DR Printer output control

Four numerical values may be specified here:

1st value: columns <1>

Number of columns to appear side-by-side on
each page.

2nd value: left margin <0>

Number of blank spaces to the left of the first
column.

3rd value: width <132>

Number of characters per column

COLLATE - 366 - TUSTEP

4th value: width between columns <0>

Number of blank spaces between columns

DRZ Additional specifications for printer output control
[I]

Three numerical values may be specified here:

1st value: header text <3>

Number of lines for the header (including line
spacing between the header and body text).

2nd value: column height <60>

Number of lines per column (excluding header
and footer lines).

3rd value: footer text <0>

Number of lines for the footer (including blank
lines between footer and body text).

KT Character string to be printed as a header at the top
of every page [II]
<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx" or
"xx.xx.xx" at the appropriate position. Positions for
the current time may be indicated by "xx.xx" and for
the page number by "xxxxxx" (2 to 6 "x"s; but with at
least as many positions as required for the page
number). If "- xxxxxx -" is specified for the page
number, the page number will appear centered between
the minus signs; the minus signs to the left and right
of the page number will be separated from the page
number by one blank space. However, the date, time and
page number can be inserted only one time each.

If a character string begins with "*:", the rest of
the character string serves as a header for every text
column. If a numeral n is entered in place of the
asterisk, the rest of the character string is used as
a header for the nth column. If the numeral specified
is 0, the rest of the character string is used for the
entire line. If a character string does not begin as
just described, "0:" is assumed (standard value).

The following rules determine which line of the header
is used by the character string: A character string
which is designated for an entire line will be printed
at the start of a new line (starting with the first
line). A character string which is designated for a
particular column will be printed in the same line as
the preceding character string, unless this line
contains text meant for an entire line, for the same
column, or for a column further to the right. In this

TUSTEP - 367 - COLLATE

case, the character string will be printed in the next
line.

Each character string can be positioned at three
positions in the line with the formatting instructions
"@z" and "@/":

flush left @z centered @/ flush right
The individual character strings will appear flush
left, centered and flush right on the page. Any single
string may be omitted, with the formatting
instructions preceding the second and third character
string also being omitted.

FT Character string (analogous to parameter KT) to be
printed as a footer at the bottom of every page. [II]

The date, time or page number may be specified in the
footer only if it has not already been specified for
the header.

PR Specifies whether all lines of the basic text are to
be recorded in the LISTING file, or only those lines
for which at least one correcting instruction is
present in the CORRECTION file. [I] <0>

0 = LISTING file will contain only those lines of the
basic text for which there is at least one
correcting instruction

1 = LISTING file will contain all lines of the basic
text

DRT Printing device for which the data are to be prepared.
This parameter is obligatory. [XI]

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST,PRINTERS.

Formatting the line-by-line synoptic output

In the LISTING file, the corresponding text of the different
versions will be displayed under each line of the basic text
(including page and line number).

For MODE=-STD-, lines which contain the text of other versions
will be preceded by the version às identification code, or, if
the correcting instruction does not contain one, the sorting
value of this version.

For MODE=CUMULATED, a version às identification code will be
printed in front of the lines containing the text of that
version. The version identification code is specified in the two
following parameters. The correcting instructions are assigned

COLLATE - 368 - TUSTEP

to the individual text versions in accordance with the sort
values contained in the correction key. Each occurring text
version must be given a sorting value (using parameter SW) and
its own version identification code (using parameter VKZ). Any
version identification code given in the correcting instructions
will be ignored.

SW Sort values which are contained in the correction key.
[I]

Correcting instructions having an unspecified sort
value will be skipped. In this case, the corresponding
error message will appear at the end of collation.

This parameter is obligatory when MODE=CUMULATED

VKZ Text strings (parallel to parameter SW) to be used as
version identification codes.

This parameter is obligatory when MODE=CUMULATED

Positions where the wording of a version is identical to that of
the basic text are marked by an equals sign "=" instead of
repeating the text of the version.

Should the user desire another character or the actual identical
wording instead of the equals sign, this can be specified in the
following parameter.

GLT Character to be used to denote identical basic text
and version text [XI] <=>

If the parameter GLT is specified without providing
any character, the identical wording of a version will
be displayed.

Should the output of identical wording be desired for certain
versions only (instead of the equal sign or the optional symbol
specified in the GLT parameter), use the following parameter.

GTZ Sorting value of the versions whose text should be
displayed, even where it is identical to that of the
basic text. [I]

Omissions in the text of the versions (relative to the basic
text) are displayed by the corresponding number of blanks. If
another character is to be used instead of a blank, specify this
in the following parameter.

LCK Character used to designate omissions in the version
text. [XI] < >

Differing text (variant) is displayed wherever the text of a
version does not match that of the basic text. Should more than

TUSTEP - 369 - COLLATE

one variant happen to have identical text, the second and any
subsequent occurrence of the variant text can be replaced by a
reference to the first occurrence (instead of displaying
identical version text). This can be specified in the following
parameter.

GLV Specifies what should be displayed when variants are
identical [I] <0>

0 = Display wording of the variant.
1 = Refer to first occurance of variant text. The

version identification code or sorting value of
the version containing the first occurance of the
variant is placed in pointed brackets at every
point where the wording would be repeated.

2 = As in 1. However, if the text version located
directly above the present variant has the same
wording, a double quotation mark (") is used
instead of the reference.

Alphabetical list of parameters

BER Selecting a text area 365
DR Printer output control 365
DRT Printer . 367
DRZ Additional specs. for printer output control . . . 366
FT Footer text . 367
KT Header text . 366
GLT Character denoting identical text 368
GLV Output of identical variants 369
GTZ Additional instructions to GLT 368
LCK Character denoting omissions 368
MAX Maximum # of lines for trial runs 365
PR Specifies extent of basic text to be printed . . . 367
SW Sorting values 368
VKZ Version identification 368

* * * * *

 - 370 -

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 C O M P A R E

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

COMPARE - 372 - TUSTEP

Survey:

Command . 373

 Specifications 373
 Features 374

General remarks 375

 Mode of operation 375
 Comparison protocol 376
 Structure & use of generated correcting instructions

 . 376
 Hyphenation 377

Parameters 379

 Selecting data 379
 Settings for LISTING file 381
 Specifying correcting instructions 383
 Specifications for comparing text versions . . 387

Alphabetical list of parameters 388

Structure of a data record in the CORRECTION file 389

Structure of the correction key 390

TUSTEP - 373 - COMPARE

Command:

#COMPARE

Specifications:
VERSIONA = file Name of the input file containing text

version A

VERSIONB = file Name of the input file containing text
version B

MODE = T The differences between the texts are to
be listed

= K The generated correcting instructions are
to be listed

= ... Printer for which the listed data
containing text differences are to be
prepared. The types of available printers
depends on the actual computer being
used. To obtain a list of these, use the
command #LIST,PRINTERS.

The printer can also be selected with
parameters.

ERASE = - * Do not erase data in the CORRECTION file
and in the LISTING file

= + Erase data in the CORRECTION file and
LISTING file

PARAMETER = - * No parameters

= file Name of the file containing parameters

= * Parameters to be entered after the
COMPARE command and ended with *EOF

CORRECTION = - * Do not record correcting instructions

= file Name of the output file to which the
correcting instructions are to be
recorded

LISTING = - * No LISTING file

= -STD- The generated listing is to be written to
the standard LISTING file.

= file Name of the file to which the generated
listing is to be written.

COMPARE - 374 - TUSTEP

Features:

This command is used to compare two text versions (A and B). The
differences are listed in the file given for the specification
LISTING. In addition, these differences can be written to the
file given in the CORRECTION specification in the form of
correcting instructions, using the same conventions for
correcting instructions as required for the program CORRECT. If
these instructions are used to correct version A, version B will
be obtained as a result (line division and numbering will be
those of version A).

The line division of the versions may be completely different.
Omissions and insertions up to the length of one typed page can
be identified by the program automatically. The program can
handle omissions and insertions of any length, provided these
are identified and indicated by the user. It is also possible to
compare only certain parts of a file.

TUSTEP - 375 - COMPARE

General remarks

A systematic comparison of two or more versions of a text may be
desirable for the following reasons:

- To record changes made in a text (eg. a protocol of
corrections made when using the TUSTEP program EDIT). In this
case, the result of the comparison is a printed list of
differences.

- To locate errors in texts which have been written twice for
semiautomatic error-detection and correction purposes. In
order to carry out semiautomatic error-detection and
correction, the program records the differences between the
two texts in a file in the form of correcting instructions.

- To locate and reference a variant by tradition for critical
text editions. Here the results of the comparison are recorded
in more detailed form, allowing the user to merge the results
of individual comparisons of different versions to the basic
text and process them further.

Mode of operation

Each time COMPARE is activated, two text versions may be
compared with one another. If the differences contained in more
than two texts are to be ascertained, each additional version
must be compared separately with the basic text (version A).
Differences recorded by the comparison of two versions can be
further processed by other TUSTEP programs.

The two text versions to be compared may vary in line format and
contain omissions or insertions. These are automatically
recognized by the program (with a corresponding amount of excess
CPU time involved) as long as each text difference is no longer
than approximately one standard typewritten page. As an
alternative, the user may mark them as such and the program will
treat them accordingly, with no waste of excess computing time.

The differences found by each comparison of two text versions
can be recorded either in the LISTING file for a subsequent
printout, or in a text file in the form of correcting
instructions. The format of these correcting instructions may be
specified by various parameters, depending on how these
instructions are to be used later.

COMPARE - 376 - TUSTEP

Comparison protocol

The comparison protocol will be written to the LISTING file. The
protocol method can be set with the specification MODE:

In MODE=T, or when a printer has been given for the MODE
specification, the comparison protocol will list the following
for every line in which a difference between the two versions
occurs: first the text of version A and below that the text of
version B. Differences between the two versions are marked
between the two lines as follows:

- an omission is marked by a "-" placed under the character in
the first line which is omitted in the second one.

- an insertion is marked by a "+" placed above the character in
the lower line which has been added to the upper line.

- a replacement is marked as an omission in the upper line and
an insertion in the lower line. Positions where "+" und "-"
would coincide are marked by a "*"

Example:

 1.1 Sample of 2 versions of a short text
 --> +++ ******** -----
 1.1 Sample of the 2 variants of a text

In MODE=K, for each line in which a difference is noted, the
text of version A will be printed. Differences between the two
versions are printed below this line in the form of correcting
instructions.

Example:

 1.1 Sample of two versions of a short text

 1.1 1.1,2+the
 1.2 1.1,4=variants
 1.3 1.1,6-

Structure and use of generated correcting instructions

Correcting instructions will be written to the CORRECTION file
independently of the selected MODE. If not specified otherwise
by additional parameters, the correcting instructions generated
by COMPARE contain the components expected by the TUSTEP program
CORRECT: the area of the text in version A to be corrected, the
type of correction ("-", "+", "=", "*" for "delete", "insert",
"replace" and "comment", respectively), and the "corrective
text" (text of version B) resulting from the correcting
instructions.

TUSTEP - 377 - COMPARE

Using these correcting instructions with the help of the
program CORRECT to correct text version A results in an
identical copy of text B (apart from the exact line division
and record numbering). If the TUSTEP programm COMPARE is used
for semiautomatic error detection and correction, the
correcting instructions resulting from the two copies of the
text must be altered before the necessary corrections can be
carried out in a subsequent CORRECT run. (These alterations
will normally consist of deleting those correcting
instructions for variants where text version A was the
correct one.)

For more complex tasks such as those encountered in the
preparation of critical editions, additional elements can be
included in the correcting instructions, namely: the correction
key, the text of verson A affected by the correcting
instructions ("original wording") and its surroundings
("context"), position of corrective text in version B, as well
as an identifying label for version B.

The correction key is needed to generate a common list of all
differences present in more than two text versions. It can be
generated by specifying the respective parameters.

If the TUSTEP program COLLATE is used to generate a synoptic
line-by-line printout of more than two text versions, an
(arbitrary) version A should be compared with the remaining
versions, one after another, each of which is to be specified
as version B. The differences must be stored as correcting
instructions (with a correction key) in CORRECTION files.

The original wording and context of the variants in text version
A are additionally required if, for example, the variants are to
be listed in a form commonly used in an apparatus criticus.

To accomplish this, the correcting instructions, which result
from comparing the other text versions with the same basic
text, must be supplied with correction keys and the other
necessary elements. By using the TUSTEP program PREPARE SORT
followed by the program SORT, these correcting instructions
can be put in the order required for an apparatus criticus:
position, wording of text variants, sorting value of the
source containing the respective variant. After sorting, text
variants can be listed together with the wording of the basic
text ("lemma") by using the program GENERATE INDEX [GINDEX].

Hyphenation

Hyphenation is not in effect when texts are compared. A "-"
written as the last character in a line (= input record) is used
to hyphenate words if the next-to-last character of the line is
also a "-", or if the next-to-last character is a letter and the
third-to-last character is not a control character ($, &, @, \,
_, #, %).

COMPARE - 378 - TUSTEP

Note for hyphenated German texts: when hyphenation is off, a
previously hyphenated "ck" (written as "k-" and "k") will not be
restored to "ck".

TUSTEP - 379 - COMPARE

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to default settings.

In addition to the parameters described below, those used to
define character groups and string groups can also be used. [V]

Selecting data

If the entire contents of both files are to be compared in their
existing order, none of the following parameters are necessary.

If only a specific area of both versions is to be compared, or
if both versions are to be compared from a given position only,
the area or the position can be specified by the parameter BER
if these specifications are identical for both versions. If the
specifications for area or position of the text portions to be
compared are not identical in both versions, the parameter ASP
must be used to select the individual text portions.

BER Definition of an area ("page.line-page.line") or a
starting point ("page.line"). This parameter is only
used when not comparing the entire contents of both
input files. [XI]

If both input files are segment files and if each has
a segment of the same name which is to be compared,
the name of the segment can be specified instead of
the area.

This parameter can only be used when the record
numbers of both files are in ascending order. Only one
of the parameters ASP and BER may be used in the same
program.

If the two files are to be compared only from certain starting
points, or if only certain areas of the two files are to be
compared, this can be specified with parameter ASP. This
parameter allows different area and position specifications for
both versions.

Specifying starting points in a document is also recommended for
comparing texts in their entirety if large differences exist
between the two files (expecially if they contain extensive
omissions or insertions) and thus would cause both a waste of
computing time when locating parallel positions, and inaccurate
matching of the differences found.

COMPARE - 380 - TUSTEP

ASP Starting points, or areas of text, to be compared.
More than one definition may be given. Definitions are
to be separated by an apostrophe. [XI]

A complete definition for an area to be compared in
both versions consists of the area definition for
version A, and the corresponding area definition for
version B, connected by a "=".

An area definition consists of a starting position and
an end position, the two positions being connected by
a "-" and taking the form p.l[/d][,w]-p.l[/d][,w],
where p stands for a page number (up to 6 digits), l
for the line number (up to 3 digits), d for the
distinction number (up to 3 digits), and w for the
word number (up to 2 digits). Entries in [] are
optional.

The specification for version B (including the
preceding "=") can be omitted if the area definitions
for version A and B are identical.

When defining two adjoining areas for the same
version, the specification for the end position of the
first area may be omitted (including the preceding
"-"). Likewise, the definition of the end position can
be omitted if the area being specified extends to the
end of the file. Such specifications without end
positions are called starting points.

If only starting points are specified (or pairs of
them, each connected by a "="), the two versions will
be compared starting with the first (pair of) starting
point(s). This means that both files will be broken up
into the same number of consecutive areas which will
be collated one after the other, as determined by the
number of corresponding (pairs of) starting points.
This arrangement may be useful for the aforementioned
reasons, even though the entire text of both versions
is to be compared.

The area definitions are written to the CORRECTION
file in the form of a correcting instruction
(correction type=comment, correction character = "*")
and placed in front of the correcting instructions
which apply to the respective area.

This parameter is to be used only with files
containing record numbers in ascending order. Only one
of the parameters BER and ASP can be used in the same
program.

If the text of version B consists only of fragments which are to
be compared with the corresponding areas in version A, it may be
advisable to define these areas in the text of version B itself
instead of using parameters.

TUSTEP - 381 - COMPARE

KBA Character strings used to denote the area definitions
in version B. [XI]

The area specifications must immediately follow the
character string specified in the parameter KBA and
are to be written with the syntax used for area
definitions in the parameter ASP. If text follows in
the same line, this text must be separated from the
area definition by a blank space. An area of version A
text defined in this way will be compared to the
version B text which follows the area definition,
including all text up to the next area definition.
Explicit area definitions for version B text are not
expected by the program.

Please note that area specifications denoting the
corresponding areas of version A must be present for
the entire text of version B. This means that the
beginning of the text of version B must therefore be
preceded by such an area specification.

The area specifications are to be written into the
CORRECTION file in the form of a correcting
instruction (correction type= comment, correction
character = "*") and placed in front of the correcting
instructions which apply to the respective area. The
correction character "*" is followed by a number
giving the relative position in the parameter KBA of
the character string used for denoting the respective
area specification in version B.

Parameters for LISTING file

If no protocol output is desired (LISTING=-), none of the
following parameters are necessary.

If a protocol is desired, the parameter DRT must be specified if
not printer has been previously given in the MODE specification.

DR Printer output control [I]

Four numerical values may be specified here:

1st value: columns <1>

Number of columns to appear side-by-side on
each page.

2nd value: left margin <0>

Number of blank spaces to the left of the first
column.

COMPARE - 382 - TUSTEP

3rd value: width <132>

Number of characters per column

4th value: width between columns <0>

Number of blank spaces between columns

DRZ Additional specifications for printer output control
[I]

Three numerical values may be specified here:

1st value: header text <3>

Number of lines for the header (including line
spacing between the header and body text).

2nd value: column height <60>

Number of lines per column (excluding header
and footer lines).

3rd value: footer text <0>

Number of lines for the footer (including blank
lines between footer and body text).

KT Character string to be printed as a header at the top
of every page [II]
<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx" or
"xx.xx.xx" at the appropriate position. Positions for
the current time may be indicated by "xx.xx" and for
the page number by "xxxxxx" (2 to 6 "x"s; but with at
least as many positions as required for the page
number). If "- xxxxxx -" is specified for the page
number, the page number will appear centered between
the minus signs; the minus signs to the left and right
of the page number will be separated from the page
number by one blank space. However, the date, time and
page number can be inserted only one time each.

If a character string begins with "*:", the rest of
the character string serves as a header for every text
column. If a numeral n is entered in place of the
asterisk, the rest of the character string is used as
a header for the nth column. If the numeral specified
is 0, the rest of the character string is used for the
entire line. If a character string does not begin as
just described, "0:" is assumed (standard value).

The following rules determine which line of the header
is used by the character string: A character string
which is designated for an entire line will be printed
at the start of a new line (starting with the first
line). A character string which is designated for a

TUSTEP - 383 - COMPARE

particular column will be printed in the same line as
the preceding character string, unless this line
contains text meant for an entire line, for the same
column, or for a column further to the right. In this
case, the character string will be printed in the next
line.

Each character string can be positioned at three
positions in the line with the formatting instructions
"@z" and "@/":

flush left @z centered @/ flush right
The individual character strings will appear flush
left, centered and flush right on the page. Any single
string may be omitted, with the formatting
instructions preceding the second and third character
string also being omitted.

FT Character string (analogous to description in
parameter KT) to be printed as a footer at the bottom
of every page. [II]

The date, time or page number may not specified in the
footer if already included in the header.

PR Specifies whether all lines of the basic text are to
be recorded in the LISTING file, or only those lines
for which at least one correcting instruction is
present in the CORRECTION file. [I] <0>

0 = LISTING file will contain only those lines of the
basic text for which there is at least one
correcting instruction

1 = LISTING file will contain all lines of the basic
text

DRT Printing device for which the data are to be prepared.
This parameter is obligatory. [XI]

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST,PRINTERS.

Parameters for correcting instructions

If no correcting instructions are to be recorded (CORRECTION=-),
the following parameters are not necessary.

If correcting instructions are to be recorded, yet none of the
following parameters are specified, the correcting instructions
will contain only the position or area of the corresponding text
in version A, the correction character (-, = +, or *) and any
corrective text involved.

COMPARE - 384 - TUSTEP

A text position or area is indicated by a single position in the
form: p.l[/d][,w], or by a beginning and end position joined by
a minus sign (-): p.l[/d][,w]-p.l[/d][,w], where p stands for
the page number (up to 6 digits), l for the line number (up to 3
digits), d for the distinction number (up to 3 digits) and w for
the word number (up to 2 digits). Elements in [] are optional.

Each correcting instruction is written to the CORRECTION file as
a single record. Parameter KFZ should be used if a line break
that occurs in the corrective text (version B) is to remain
recognizable as such in the correcting instruction. This ensures
that the correcting instruction is split at the same point where
the line break splits the text in version B.

KFZ Specifies whether continuation lines should be
generated for correcting instructions whose corrective
text contains a line break [I] <0>

0 = No continuation lines are to be generated
1 = Continuation lines are to be generated to match

line breaks in version B.

When a correcting instruction is split in this
fashion, the continuation lines appearing in the
CORRECTION file will contain the correction key (only
if the parameter SW has been specified), the
correction code "+" (to indicate the continuation of a
correcting instruction), and the continuation of the
corrective text.

The following parameters must be employed if a more expanded
form of correcting instruction is desired. Consult the section
"Structure of a data record in the CORRECTION file" for further
details concerning what kind of information that may be included
in a correcting instruction.

In order to keep track of which version a correcting instruction
refers to (even after correcting instructions generated by
comparing the basic text with various text versions have been
merged into a single file), a marker can be assigned to a
correcting instruction. This marker is specified in the
parameter VKZ.

VKZ Character string used to mark correcting instructions
[II]

The character string specified here will be enclosed
in parentheses and inserted after the position
indicator of the version A text affected by the
correcting instruction.

If the text in version A affected by the correcting instruction
("original wording") and any surrounding text ("context") is

TUSTEP - 385 - COMPARE

also to be included in the correcting instruction, the parameter
UMG must be used.

UMG Specifications for output of original wording and its
context. [I]

Three numerical values may be specified here:

1st value: context preceding original wording <0>

Number of words located before the original
wording that are to be included in the
correcting instruction.

2nd value: Original wording <0>

Maximum number of words of the original wording
that will be included in the correcting
instruction. If the original wording contains
more words than specified here, it will be
shortened by omitting surplus words from the
middle of the text. If not specified otherwise
in the parameter UMK, the omitted words will be
marked by ".....".

Third value: Context after the original wording <0>

Number of words located after the original
wording that are to be included in the
correcting instruction.

In the correcting instruction, the original wording will be
separated from the context (assuming the latter has been
specifed by the parameter UMG) by "::". If the original wording
in the correcting instruction has been shortened (cf. parameter
UMG), "....." will be inserted in place of the omitted words. To
make any changes in these default settings, the desired
character strings can be specified in parameter UMK.

UMK Specifies the character strings used to separate the
context from the original wording, and the character
string used to denote any necessary omissions in the
original wording. [II </::/...../::/>

The first character string separates the original
wording from the preceding context; the third
character string separates the original wording from
the context following it.

If no context is to be included either before or after
the original wording (as specified in parameter UMG),
the corresponding first and/or third character strings
will be omitted from the correcting instruction.

COMPARE - 386 - TUSTEP

The second character string specified here will be
inserted into the correcting instruction if the
original wording has to be shortened.

The position indicator of text from version B ("corrective
text") will only be displayed if this is requested in the
following parameter. This option enables the text to be used
later for reference purposes (for example, for compiling
corresponding indexes).

STB Specifies whether the position indicator from version
B (corrective text) is to be included in the
correcting instruction. [I] <0>

0 = No position indicator of corrective version text
1 = Include position indicator of corrective version
text

The position indicator of the corrective text,
surrounded by angle brackets, will be placed before
the correction code in the same form as that used to
indicate the position of the original wording.

The correction key will be included in the correcting
instruction only if so specified in parameter SW. This is
necessary if the correcting instructions are to be sorted, or if
they are to be processed for printing with the TUSTEP program
COLLATE.

SW Specifies a sorting value [I] <0>

The program expects a number from 0 to 99 as a sorting
value. It is a component of the correction key and can
be used together with other sorting criteria to
arrange correcting instructions in any desired order.

When this parameter is specified, the correction key
will be inserted into the correcting instruction. A
schematic description of the structure of a correction
key can be found in the section "Structure of the
correction key" on page 390.

TUSTEP - 387 - COMPARE

Parameters for comparing text versions

When differences between two text versions are encountered
during the comparison, the program must be able to mark off
lengthy text additions or omissions while at the same time
keeping those parts of the two versions which correspond to each
other, despite their differences, in a word-to-word order
whenever possible.

If the differences between the two versions are limited to
orthographic idiosyncrasies or to the use of abbreviations in
the text, the program is able to carry out a better correlation
of the compared text of the two versions if the following
parameters are used.

Specified in these parameters are characters which may be
regarded as equivalent, be ignored, or stand for abbreviations.
However, any differences based on these characters will always
be included in the output.

GLZ Characters or groups of characters [VI]

Characters which are to be treated as equivalent must
first be defined as a character group (parameter type
V). The identification for each character group must
be specififed in the parameter GLZ.

For example, if i and y are to be considered
equivalent and, at the same time, c, g, k and q are
also to be equivalent, two separate character groups
must be defined. The first character group contains i
and y, the second one c, g, k and q. By entering
separate group identifications in the parameter GLZ,
the characters i and y will represent one group of
equivalent characters, and the characters c, g, k and
q will represent a second group of equivalent
characters.

Furthermore, this parameter can be used to specify
characters which should be either ignored or treated
as abbreviations. If this is the case, the
corresponding specifications must be given in the
parameters IGN and ABK respectively.

IGN Position number specifying which character (or
character group ID) given in the parameter GLZ that is
to be ignored during comparison. A character group
identification will be counted as one character. [I]

The parameter IGN expects one number only. Therefore,
if more than one character is to be ignored, all
characters to be ignored must first be defined as a
character group; the identification of this character
group must then be specified in parameter GLZ.

COMPARE - 388 - TUSTEP

ABK Position number specifying which character (or
character group ID) given in parameter GLZ that is to
be regarded as an abbreviation character. A character
group identification will be treated as one character.
[I]

The parameter ABK expects one number only. Therefore,
if more than one character is to be used as an
abbreviation character, all such characters must first
be defined as a character group; the identification of
this character group must then be specified in the
parameter GLZ.

Alphabetical list of parameters

ABK Defining abbreviation character 388
ASP Specifying starting point or area to be compared 380
BER Selecting area from version A and B 379
DR Printer output control 379
DRT Type of printer 383
DRZ Additional specifications for printer output
 control . 382
FT Footer text . 383
GLZ Table of characters for comparison 387
IGN Defining characters to be ignored 387
KBA Characters used to denote area definitions 381
KFZ Continuation lines in corrective text 384
KT Header text . 382
PR Content of listing file 383
STB Position of corrective text 386
SW Sorting value 386
UMG Context of original wording 385
UMK Characters used to separate context from original
 wording . 385
VKZ Version identification 384

TUSTEP - 389 - COMPARE

Structure of a data record in the CORRECTION file

 KS StA (VKZ) n [KL :: OWL :: KR] <StB> KZ KTxt

 *** ** ****
SW ++
VKZ +++++
UMG +++++++++++++++++++++
STA +++++

 *** Data which are always generated
 +++ Data generated by specifying the parameters
 listed in the left column

 Abbreviations:

 KS Correction key
 StA Position indicator in version A
 VKZ Correcting instruction marker
 n Number of "]" in the context and original
 wording
 KL Context to the left of the original wording
 OWL Original wording (from version A)
 KR Context to the right of the original wording
 StB Position indicator of version B
 KZ Correction code
 KTxt Corrective text (from version B)

The original wording and its context are surrounded by brackets.
If this text includes right brackets, the number of such
brackets contained in the context and original wording is shown
by the number n preceding the left bracket marking the context.
In this way, the program is able to recognize the right bracket
which marks the end of the original wording and its context. If
the context and original wording contain no right brackets, n is
omitted.

If the number representing n occurs immediately after the
position indicator StA -- this being the case when the
correcting instructions are not identified by the character
string in parentheses (see parameter VKZ page 384) -- the
character string "()" will be inserted before n in order to
separate it from the preceding position indicator.

The character string"::" located between the context and the
original wording can be substituted by any other character
string (see: parameter UMK, page 385).

COMPARE - 390 - TUSTEP

Structure of a correction key

The correction key consists of a total of 44 characters and is
structured as follows:

 APO EPO KA SW FNR POS

APO 1 17 Starting position of the corrective text

 1 6 page number
 7 3 line number
 10 3 distinction number
 13 2 word number
 15 3 character number

EPO 18 17 End position of the corrective text

 18 6 page number
 24 3 line number
 27 3 distinction number
 30 2 word number
 32 3 character number

KA 35 2 Type of correction:

 35 1 0 = error
 1 = page-line-word-character
 2 = page-line-word
 3 = page-line

 36 1 0 = error
 1 = comment (*)
 2 = delete (-)
 3 = replace (=)
 4 = insert (+)

SW 37 2 Sorting value (version number)

FNR 39 3 Continuation number (for continuation
 lines)

POS 42 3 Position of the correction code (*, -, =, +)
 in the correcting instruction

The first number specifies the position of each character within
the correction key, the second number specifies the number of
characters.

The character number is not used by the TUSTEP program COMPARE;
this number is used by the PREPARE SORT program to create the
correction key.

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 C O P Y

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

COPY - 392 - TUSTEP

Survey:

Command . 394

 Specifications . 394
 Features . 395

Parameters . 396

- INITIALIZATION . 396

 Defining the special selector switches 396
 Determining the initial setting for selector switches 397
 Retrieving selector switch settings from the command level
 . 397
 Determining the initial value of the running number . 398
 Determining the initial stored comparison texts . . . 398
 Determining the initial contents for replacement texts 398
 Determining initial values for variables 398
 Redefining program flow 399

- PROGRAM PART 0 . 400

 Selecting data on input 400
 Organizing records into text units 401
 Replacing character strings on input 402
 Partitioning the basic text 402

- PROGRAM PART 1 (query and comparison) 403

 Branching according to a selector switch position . . 403
 Branching according to a variable 403
 Branching according to a marker 403
 Preparing the comparison text 404
 Branching according to the frequency of character strings 405
 Selecting the text units 405

- PROGRAM PART 2 (processing) 409

 Setting and canceling selector switches 409
 Defining the working text 410
 Replacing text parts 412
 Inverting text parts 413
 Calculating printing positions 413
 Reading numerical values from the working text 414
 Executing calculation instructions 415
 Inserting numerical values in the working text 415
 Replacing character strings 417
 Replacing character strings with conditions 418
 Inserting previously defined text parts 419
 Inserting a running number 421
 Inserting the page-line number 422
 Defining positions (columns) 423

- PROGRAM PART 3 (output) 424

 Printing messages 424
 Determining the DESTINATION file 424

TUSTEP - 393 - COPY

 Determining the beginning and end of lines 424
 Determining the beginning and end of pages 425
 Inserting blank lines during output 426
 Replacing character strings during output 426
 Eliminating blanks at the beginning and end of lines . 426
 Eliminating blank lines during output 427
 Determining record length 427
 Determining record numbering 427

- PROGRAM PART 4 . 428

 Redefining the basic text 428

- PROGRAM PART 5 . 428

 Defining stored comparison texts 428

- PROGRAM PART 6 . 428

 Defining replacement texts 428

- PROGRAM PART 7 . 429

 Replacing/supplementing the stored text by the working text
 . 429

- PROGRAM PART 8 . 429

 Exchanging stored text and working text 429

- PROGRAM PART 9 . 429

 Replacing/supplementing the working text by the stored text
 . 429

- FINAL STEP . 430

 Printing calculated numerical values 430
 Saving selector switch settings to the command level . 430

- Alphabetical list of parameters 431

Check digits . 434

Compute statements 435

 Variables . 435
 Functions . 438
 Arithmetic expressions 441
 Relation conditions 441
 Logical expressions 442
 Value assignments 442
 Jump statements 443
 Conditional statements 443
 Loop statements 444

Logical program structure 446

COPY - 394 - TUSTEP

Command:

#COPY

Specifications:
SOURCE = file Name of the file containg the data to be

copied.

= -STD- The standard TEXT file contains the data
to be copied.

DESTINATION= file Name of the file to which the data are to
be copied. More than one file name is
allowed.

= -STD- The data are to be copied into the
standard TEXT file.

MODE = -STD- * Retain numbering of records if possible.

= + Renumber the records

= - Retain numbering of records in every case

= S DATA file contains sort units.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

PARAMETER = - * No parameters

= datei Name of the file containg parameters

= * The parameters follow the command and are
ended by *EOF.

DATA = - * SOURCE file contains records in their
entirety.

= file Name of the file containing the text part
of each record.

= -STD- The standard DATA file contains the text
part of each record.

LISTING = - * No trace

= + Trace is to be written into the journal.

= -STD- Trace is to be written into the standard
LISTING file.

= file Name of the file into which the trace is
to be written.

TUSTEP - 395 - COPY

Features:

With this command files can not only be copied, but also
processed in a various number of ways.

Using parameters it is possible to:

- examine data

- select data

- rearrange and supplement individual text parts

- replace character strings

- process calendar dates

m,2- calculate numerical values contained in the text

- control the form of output

COPY - 396 - TUSTEP

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to initial settings.

In addition to the following parameters, other parameters can be
used to define character groups and strings. [V]

In certain parameters, text parts can be selected for further
processing by means of beginning and/or end markers as well as
markers that serve as left and right parentheses for selecting
the desired part. The specific functions of these parameters are
also described at the end of the "Parameters" chapter in "TUSTEP
Basics".

For parameters which have to be specified explicitly for each
pass, the number of the pass must be entered flush-right in
columns 6 and 7; if this number is not given in such a
parameter, pass 1 will be assumed.

Unless specified otherwise, parameters will be processed in the
order they are described below. When more than one pass is to be
processed, the pass number sets the priority order if the
program flow has not been defined otherwise with the appropriate
parameters. Thus, the parameters specified when starting the
program may be given in any order. However, if continuation
lines are used in a parameter, these must be entered in logical
order immediately after the first line of the parameter. To
avoid any mistakes or oversights, it is recommended to specify
parameters in the order they are to be processed.

INITIALIZATION

Defining the special selector switches

SWS Special selector switches [I]

Five numerical values (for selector switches 1 to 16)
may be specified here:

1st value: selector switch for input data <0>

The specified selector switch is canceled upon
every input and set when the input data are
exhausted.

2nd value: selector switch for partitioning basic text
<0>

TUSTEP - 397 - COPY

The specified selector switch is canceled prior
to every partitioning of the basic text and is
set when the basic text is exhausted.

3rd value: selector switch for test runs (trace) <0>

The control output (trace) for each individual
part of the program will be printed only when
the specified selector switch has been set.

4th value: selector switch for repeating basic text
<0>

If the specified switch is set when jumping to
program part 0, the same part of the basic text
as used in the previous pass again becomes the
working text. The selector switch will be
cancelled automatically. If the basic text (or
part of it) has not yet become the working
text, i.e. immediately after it has been read
from the SOURCE file, the selector switch will
be ignored.

5th value: selector switch for double passes <0>

When the end of the SOURCE file is reached for
the first time, the file will be read once more
if the specified selector switch has been set.

Note: This feature can be used, for example, to
add up the individual numerical values in the
first pass (without having the data written to
the DESTINATION file) to establish their total
number. The corresponding procent figures can
then be calculated for each numerical values
and added to the text during the second pass.

Determining the initial setting for selector switches

WSG Selector switches which are to be set. [I]

Up to 16 numerical values (numbers of the selector
switches 1 to 16) may be specified. Selector switches
which remain unspecified will be cancelled.

Retrieving selector switch settings from the command level

WSH Selector switches whose initial settings are to be
determined by the settings of the command level
selector switches (these are selector switches which
can be either set or cancelled with the command
#SWITCH). [I]

COPY - 398 - TUSTEP

Up to 7 numerical values (numbers of the selector
switches 1 to 7) may be specified. Selector switches
not specified here will be set or cancelled according
to the specifications given in the parameter WSG.

Determining the initial value of the running number

LNB Specification in case the running number, which can be
inserted with parameter LNR, is not to begin with 1.
[I]

Two numerical values can be specified:

1st value: Value to be added to the output number (= 1
+ the number of text units already
outputted). <0>

2nd value: Value to be added to the (separate) running
number. <0>

Determining the initial stored comparison texts

VTV Initial stored comparison text. The text part
specified here is stored in memory at the start of the
program; it will serve as the stored comparison text
for the pass for which this parameter has been given.
[II]

Determining the initial contents for replacement texts

ETV Initial replacement text. The replacement text part
specified here is stored in memory at the start of the
program; it will serve as the replacement text for the
pass for which this parameter has been given. [II]

Determining initial values for variables

R Compute statements for inital variable settings

Described in the section "Compute statements" on page
435 ff.

TUSTEP - 399 - COPY

Redefining program flow

The program às logical operation is schematically illustrated in
the table "Logical program structure" on page 446. Program flow
can be redefined by using either the parameters SPW, SPN, SPJ
and SPn (n=0,1,3,...,8,9) or the parameter SPR. If parameter SPR
is used, none of the other parameters may be used. Parameter SPR
must be used instead of the others if more than 20 passes are
defined.

SPW Jump table for a jump in case a selector switch
specified in WS+ is set, or in case a selector switch
specified in WS- is not set. [I]
<see "Logical program structure">

SPN Jump table for a jump in case not all comparison
conditions have been met. (no). [I]
<see "Logical program structure">

SPJ Jump table for a jump in case all comparison
conditions have been met (yes). [I]
<see "Logical program structure">

SPn Jump table for jump after completion of program part n
(n=0,2,3,...,8,9). [I]
<see "Logical program structure">

SPR Jump table for all provided jumps in a single pass.
[I] <see "Logical program structure">

This parameter can be used to specify in the nth pass
(where n is entered flush-right in columns 6 and 7 of
the parameter) those values that could be specified
individually as an nth value with the parameters SP0,
SPW, SPN, SPJ, SP2, SP3, ..., SP9. Here care should be
taken to observe all jumps involved and to specify
them in their correct sequence.

COPY - 400 - TUSTEP

PROGRAMM PART 0 (Input only, no run specifications):

Selecting data on input

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of an area ("page.line-page.line") or a
starting point ("page.line"). This parameter is only
used when not processing the entire input file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when all record
numbers of the file are in ascending order. Moreover,
only one of the parameters BER, NR+ and NR- can be
used in the same program.

NR+ Page-line numbers (also areas) of records to be
processed. More than one definition may be given;
definitions are to be separated from one another by an
apostrophe. [XI]

Records will be read in the same order as given in the
page-line numbers (or areas). The specified records
may overlap or be repeated any number of times.

This parameter is only to be used when the record
numbers in the file are in ascending order. Moreover,
only one of the parameters BER, NR+ und NR- may be
used at one time.

NR- page-line numbers (also areas) of records to be
ignored. Area definitions must be separated from one
another by an apostrophe. [XI]

The page-line numbers (or areas) must be given in
ascending order. Areas may not overlap.

This parameter can only be used when the record
numbers in the file are in ascending order. Moreover,
only one of the parameters BER, NR+ und NR- may be
used in the same program.

MAX For test runs, specifies the maximum number of text
units to be either read or included in the output. [I]

Two numerical values may be given here:

1st number Maximum number of text units to be read
<999999>

TUSTEP - 401 - COPY

2nd number Maximum number of text units for output
<999999>

Organizing records into text units

In case each input record contains a complete text unit, the
following parameters should not be used. Otherwise, the
parameters ANR, AA and/or AE can be used to organize more than
one record into a text unit.

If one of the following four parameters is specified, any blanks
located either before or after the input record will be
eliminated before the parameter is evaluated.

When records are being organized into a text unit, a blank will
be inserted between each input record; no blank will be inserted
at positions where hyphenation protect has been specified (see
parameter STR).

ANR Specifies whether successive records, whose record
numbers either partially or completely match, are to
be organized into a text unit. [I] <0>

One numerical value may be specified:

0 = Do not organize records into a text unit on the
basis of record numbers.

1 = Organize successive records having the same page
number into a text unit.

2 = Organize successive records having the same page
and the same line number (regardless of the
distinction number) into a text unit.

3 = Organize all successive records with the same
record number into a text unit.

If 0 is specified (default setting), records will be
organized into text units on the basis of the two
following parameters only. If one of the values 1 to 3
is specified, the resulting text units may be broken
down further on the basis of the two following
parameters.

AA Character strings placed at the beginning of a record
(after leading blanks have been eliminated) which mark
the start of a text unit. [VIII a]

AE Character strings placed at the end of a record (after
any trailing blanks have been eliminated) which mark
the end of a text unit. [VIII b

STR Hyphenation [I] <0>

0 = Input data are not hyphenated
1 = Rejoin hyphenated words during input

COPY - 402 - TUSTEP

Here a hyphen is considered to be a "-" which (after
trailing blanks have been eliminated) is the last
character in an input record if the second-to-last
character is also a "-" or a letter and the
third-to-last character is not a control character ($,
&, @, \, _, #, %).

When hyphenation is turned off, a hyphenated "ck",
which according to German hyphenation is written as
"k-" and "k", will not be restored to its "ck" form.

Replacing character strings on input

X Pairs of character stings (and exception strings). On
input, the first character string of a pair will be
replaced in the text by the pair às second character
string. [X]

Replacement is carried out separately in each input
record, even if a text unit consists of more than one
record (see parameters ANR, AA and AE).

Before the character string is replaced, a blank is
added to both the beginning and end of the record
(after any previous blanks have been removed); both
blanks are removed after replacement.

Before replacement takes place, the program first
checks to see whether the record begins with the
character string specified in the parameter AA, or
whether it ends with the character string specified in
the parameter AE.

If hyphenated words are to be rejoined (parameter
STR), the program checks whether the record ends with
a hyphen after replacement.

PROGRAMM PART 0 (basic text ==> working text):

Partitioning the basic text

GTU Character strings marking the positions where the
basic text is to be partitioned. The respective
character string is considered part of the text which
follows it. [IX]

TUSTEP - 403 - COPY

PROGRAMM PART 1 (inquiry + comparison):

Branching according to a selector switch position

WS+ The jump condition is met if one of the specified
selector switches is set (see also: parameter SPW).
[I]

Up to 16 numerical values (i.e., the numbers of the
selector switches 1 to 16) may be specified.

WS- The jump condition is met if one of the specified
selector switches is not set (see also: parameter
SPW). [I]

Up to 16 numerical values (i.e. the numbers of the
selector switches 1 to 16) may be specified.

Branching according to a variable

VSP Jump addresses to be skipped to according to variable
S8 (cf. page 436). If the value of S8 is less than 1
or larger than the number of specified jump addresses,
no jump will be carried out. [I]

Branching according to a marker

PV Starting position for KEN and the comparison text (or
the starting position from which the comparison text
is to be extracted from the working text), in case
this is not equal to 1, or differs from the starting
position specified in the parameter POS. [I] <1st
numerical value given in the parameter POS>

KEN Character strings which serve as (beginning) markers
for text units. If the working text begins with a
specified character string, the jump will be made to
the corresponding jump address specified in the
parameter KSP. If this address is missing, or the text
unit begins differently, no jump will take place.
[VIII a]

KSP Jump address corresponding to the markers given in KEN
[I]

COPY - 404 - TUSTEP

Preparing the comparison text

If the working text is to used in its entirety as the comparison
text, the following selection parameters (PV to VI) are not
necessary.

PV Beginning position for the comparison text.

(Described above under parameter PV on page 403)

AV Character strings marking the beginning of the text
part of the working text which is to be used as the
comparison text. [IX]

EV Character strings marking the end of the text part of
the working text which is to be used as the comparison
text. [IX]

(V Character strings which serve as a left parenthesis
when selecting the comparison text (if AV and/or EV
have not been specified) or when eliminating text
parts already selected by AV and/or EV. [IX]

)V Character strings which serve as right parenthesis
when selecting the comparison text (if AV and/or EV
have not been specified) or when eliminating text
parts already selected by AV and/or EV. [IX]

VI Index for the parameters AV, EV, (V and)V [I]

Two numerical values may be specified:

1st value: Specification analogous to parameter AEI
<1>

2nd value: Specification analogous to parameter KLI
<0>

XV Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
in the comparison text by the pair às second character
string. [X]

TUSTEP - 405 - COPY

Branching according to the frequency of character strings

ZFZ Character strings which are to be counted in the
comparison text. The number is saved in the variable
S5 (cf. page 436). For the character string which
first occurs in the comparison text, its position in
this parameter is stored in the variable S6 (cf. page
436). [IX]

ZSP Jump addresses to be skipped to according to the
number of character strings counted in parameter ZFZ.
If this number is 0, or larger than the number of
specified jump addresses, no jump will be carried out.
[I]

Selecting the text units

In case certain text units are to be selected for further
processing, the following parameters are used to specify the
criteria for selection.

Selection is carried out in five steps. In order for a text unit
to be considered selected at the end, it must be selected in
every step for which parameters have been specified.

S t e p 1

In this step, the comparison text can be checked to see whether
it consists of only certain characters or character strings.

ZFP Character strings which may comprise the comparison
text. [IX]

If the comparison text contains characters or
character strings which cannot be composed from those
specified in the parameter, the text unit will not be
selected.

S t e p 2

In this step, the comparison text can be checked to see whether
it
- consists/does not consist of a particular character string
- contains/does not contain a particular character string
- starts/does not start with a particular character string
- ends/does not end with a particular character string

If the comparison text matches one of the text parts specified
in the parameters T+ or T+U, the text unit will be selected. In

COPY - 406 - TUSTEP

this case, the text unit will not be checked further on the
basis of the parameters remaining in this step. If no other
parameters have been specified for this step, only these text
units will be selected.

T+ Text parts, one of which must match the comparison
text if the text unit is to be selected. [III]

No distinction is made between uppercase and lowercase
letters.

T+U Text parts, one of which must match the comparison
text if the text unit is to be selected. [III]

A distinction is made between uppercase and lowercase
letters.

If the comparison text matches one of the text parts specified
in the parameter T- or T-U, the text unit will not be selected.
In this case, the text unit will not be checked any further on
the basis of the remaining parameters in this step.

T- Text parts, none of which may match the comparison
text if the text unit is to be selected. [III]

No distinction is made between uppercase and lowercase
letters.

T-U Text parts, none of which may match the comparison
text if the text unit is to be selected. [III]

A distinction is made between uppercase and lowercase
letters.

The parameters ZF+, TA+ and TE+ can be used to specify
conditions under which a text unit is to be selected. If one or
more of these parameters are specified, the comparison text must
meet at least one of the stated conditions if the text unit is
to be selected.

ZF+ Character strings, of which at least one must occur in
the comparison text if the text unit is to be
selected. [IX]

TA+ Character strings, of which at least one must match
the beginning of the comparison text if the text unit
is to be selected. [VIII a]

TE+ Character strings, of which at least one must match
the end of the comparison text if the text unit is to
be selected. [VIII b]

TUSTEP - 407 - COPY

The parameters ZF-, TA- and TE- can be used to specify
conditions under which a text unit is not to be selected. If one
or more of these parameters are specified, only one of the
stated conditions need be met in order that the text unit will
not be selected.

ZF- Character strings, none of which may occur in the
comparison text if the text unit is to be selected.
[IX]

TA- Character strings, none of which may match the
beginning of the comparison text if the text unit is
to be selected. [VIII a]

TE- Character strings, none of which may match the end of
the comparison text if the text unit is to be
selected. [VIII b]

If one or more of the parameters ZF+, TA+ and TE+ as well as one
or more of the parameters ZF-, TA- and TE- are specified, the
comparison text must fulfill at least one of the conditions
stated in the parameters ZF+, TA+ and TE+ and may not meet any
of the conditions stated in parameters ZF-, TA- and TE- in order
for the text unit to be selected.

S t e p 3

In this step, the comparison text may be checked for the order
and frequency of specified character strings.

ZF Character strings whose occurrence in the comparison
text is to be checked for their order and frequency.
[IX]

The character strings specified here must occur in the
comparison text in the same order as given in this
parameter. Otherwise the text unit will not be
considered selected.

The parameters ZFM and/or ZFH can be used to specify
the minimum or maximum number of times character
strings specified in the parameter ZF may occur in the
comparison text. Such character strings which occur
more than once in the comparison text may be separated
in the comparison text by text of any kind except for
other character strings specified in the parameter ZF.

Variable S4 (cf. page 416) will record the relative
position of the first character string in the
comparison text in terms of its position as specified
in parameter ZF. However, if one of the conditions in
parameters parameters ZF, ZFM and ZFH is not met,

COPY - 408 - TUSTEP

variable S4 will record the position of the first
character string where this occurs.

ZFM Specifies the minimum frequency required for each
character string in the comparison text. Frequencies
must be given in the same order as the corresponding
character strings in parameter ZF. [I] <0,0,0,...>

If one of the character strings fails to meet this
condition, the text unit will not be selected.

ZFH Specifies the maximum frequency permitted for each
character string in the comparison text. The
frequencies must be given in the same order as the
corresponding character strings in the parameter ZF.
[I] <1,1,1,...>

If one of the character strings fails to meet this
condition, the text unit will not be selected.

S t e p 4

In this step, the comparison text can be compared with
a comparision text which has been previously stored.
This can be used to check the respective alphabetical
order of the two texts, or whether they are identical.
The stored comparison text can be specified at the
start of the program with parameter VTV. It can also
be redefined (stored) in program part 5 each time the
program is run.

VGL Specifies how the comparison text and the stored
comparison text are to be compared with one another.
[I]

One numerical value can be specified:

0 = Both texts must be identical.
1 = Both texts must be identical or the comparison

text às alphabetical location must precede that of
the stored comparison text.

2 = The comparision text às alphabetical location must
precede that of the stored comparison text.

3 = Both texts must be identical or the comparison
text às alphabetical location must follow that of
the stored comparison text.

4 = The comparision text às alphabetical location must
follow that of the stored comparison text.

n = Both texts may deviate by n percent of their
characters.

VTB Comparison table for comparing the comparison text
with the stored comparison text [VII]

TUSTEP - 409 - COPY

S t e p 5

In this step, the first number occurring in the comparison text
can be tested to see whether it has been provided with its
corresponding check digit.

PZP Specifies the type and form of the check digit. [I]

Two numerical values can be specified:

1st number: Type of check digit

0 = Do not test check digit in the comparison
text

1 = Check digit = Difference between the sum of
the weighted digits and the next multiple
of 11

2 = Check digit = Difference between the sum of
the weighted digits and the previous
multiple of 11

2nd number: check digit syntax

0 = Check digit immediately follows the number.

1 = Check digit is separated from the number by
a "-"

For a description of how check digits are calculated,
see "Check digits" (page 434).

PROGRAMM PART 2 (Processing):

Setting and canceling selector switches

WSS selector switches which are to be set. [I]

Up to 16 numerical values (selector switch numbers 1
to 16) may be specified.

WSL selector switches which are to be canceled. [I]

Up to 16 numerical values (selector switch numbers 1
to 16) may be specified.

WSU selector switches which are to be toggled. [I]

Up to 16 numerical values (selector switch numbers 1
to 16) may be specified.

COPY - 410 - TUSTEP

Defining the working text

T Text which is to be used as the working text. [II]

If this parameter is given, the specified text will
become the working text. Any position specifications
given in the parameter POS will be ignored, i.e. the
previous working text will be completely replaced
starting at position 1.

PK Starting position from which the individual text parts
are to be selected, if this value does not equal 1 or
differs from the starting position specified in
parameter POS. That part of the text unit located
before this position will be copied in its original
form. The first character string specified in the
parameter ERG (if any) will be inserted at this point.
[I] <1st numerical value of the parameter POS>

AKn Character strings which mark the beginning of the nth
part (n=1,2,...,9) of the new working text. [IX]

EKn Character strings which mark the end of the nth part
(n=1,2,...,9) of the new working text. [IX]

AEI Index for the parameters AKn and EKn
[I] <1,1,1,1,1,1,1,1,1>

One to nine numerical values can be specified:

1 = Selects the first text part marked with A/E
(beginning with the beginning marker and ending
before the following end marker, or at the end of
the text unit).
If only A has been specified, the selected text
part ends at the end of the text unit; if only the
parameter E has been specified, the selected text
part starts at the beginning of the text unit.

0 = Selects that part of the text unit which would be
excluded by choosing 1.

3 = As in 1. However, this selects not only the first
text part marked with A/E, but all text parts
marked in this way (with the second text part
starting with the beginning marker which follows
the end of the first text part marked with A/E).
If only A is specified, the selected text part
will begin at the last beginning marker ocurring
in the text unit, and will end at the end of the
text unit. If only E is specified, the selected
text part will will start at the beginning of the
text unit and end before the last end marker of
the text unit.

2 = Selects that part of the text unit which would be
excluded by choosing 3.

TUSTEP - 411 - COPY

If one of the values 0 to 3 is specified, each
beginning marker is counted as part of the text
following it, while the end marker is not counted as
part of this text. This treatment of beginning and end
markers can be reversed by adding either 10 or 20 to
the number chosen. If the value of 10 is added (i.e.
by entering a number from 10 to 13), each beginning
marker will not be counted as part of the following
text; if 20 is added, each end marker will be counted
as part of the preceding text. If 30 is added, the
beginning marker is not counted as part of the
following text and the end marker is counted as part
of the preceding text.
When 2 or 3 is chosen, the program is instructed to
search the text for more than one beginning marker,
and will look for a new beginning marker starting at
the first position after the end of the preceding text
part. Therefore, for the values 2 and 3, the search
for a new beginning marker starts at the first
character of the preceding text às end marker, since
the end marker is not part of the preceding text.
Beginning and end markers may thus overlap in the
text. If 20 or 30 is added to these values, the next
beginning marker is searched from the character which
follows the last position of the most recently found
end marker, since this marker is counted as part of
the preceding text.

(Kn Character strings serving as left parentheses for
selecting the nth (n=1,2,...,9) part of the new
working text (in case AKn and/or EKn has not been
specified) or for eliminating text parts from the text
part already selected with AKn and/or EKn. [IX]

)Kn Character strings serving as right parentheses for
selecting the nth (n=1,2,...,9) part of the new
working text (in case AKn and/or EKn has not been
specified) or for eliminating text parts from the text
part already selected with AKn and/or EKn. [IX ; MSCAN]

KLI Index for the parameters (Kn and)Kn
[I] <0,0,0,0,0,0,0,0,0>

One to nine numerical values may be specified:

0 = Eliminates the parts of the text in parentheses
(including the parentheses themselves). Missing
parentheses are added logically at either the
beginning or end of the text unit or text part
which has already been selected.

1 = Selects all text parts which would be eliminated
by option 0.

2 = As in 0, but unpaired parentheses are ignored
instead of being logically provided with a
complementary parenthesis.

3 = Selects those text parts which would be eliminated
by option 2.

COPY - 412 - TUSTEP

If the values 0 to 3 are specified, the parentheses
themselves are considered part of the text in
parentheses and are thus either eliminated along with
the text or are kept with it. This treatment of left
and right parentheses can be reversed by adding either
10 or 20 to the value chosen. If 10 is added (i.e. by
entering a value from 10 to 13), each left parenthesis
will not be counted as part of the text in
parentheses. If 20 is added, each right parenthesis
will not be counted as as part of the text in
parentheses. If 30 is added, neither parenthesis will
be counted as part of the text in parentheses.

ERG Text parts to be added at the beginning of the text
unit, between the individual text parts selected by
the parameters AKn,EKn and/or (Kn,)Kn, and at the end
of the the text unit. If for a text part no selection
parameter has been specified, the entire text unit (or
that part of the text unit starting with the beginning
position specified in the parameter POS or PK) will be
copied. [II]

Replacing text parts

ATT Character strings marking the beginning of the text
parts to be replaced. [IX]

ETT Character strings marking the end of the text parts to
be replaced. [IX ; MSCAN]

(TT Character strings to be used as a right parenthesis
when selecting the text parts to be replaced (or after
selecting such text parts with ATT and/or ETT). [IX]

)TT Character strings to be used as a left parenthesis
when selecting the text parts to be replaced (or after
selecting such text parts with ATT and/or ETT). [IX]

TTI Index for ATT, ETT, (TT and)TT [I]

Two numerical values may be specified:

1st number: Specification analogous to parameter AEI
<1>

2nd number: Specification analogous to parameter KLI
<0>

TTT Pairs of text parts [IV]

The first text part of each pair is checked to see if
it is identical with the text parts chosen on the

TUSTEP - 413 - COPY

basis of the above parameters. Here no distinction
will be made between uppercase and lowercase letters.
Each such text part of the working text will be
replaced by the second text part of the respective
text-part pair.

The parameters TTT and TUT cancel each other out when
used in the same pass.

TUT Pairs of text parts. [IV]

As in parameter TTT, but a distinction is made between
uppercase and lowercase when the check for matching
text is made.

The parameters TTT and TUT cancel each other out when
used in the same pass.

Inversion of text parts

AUM Character strings marking the beginning of the text
parts to be inverted. [IX]

EUM Character strings marking the end of the text parts to
be inverted. [IX]

NUM Character strings which are not to be inverted should
they occur in the text parts to be inverted. [IX]

Calculating printing positions

DPB Type of output device (printer) for which the length
of the working text is to be calculated in terms of
the number of printing positions. [XI]

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST, PRINTERS.

The number of calculated printing positions is stored
in the special variable S1 (see page 436 ff.).

Note to DOS version: due to memory requirement
limitations, this parameter cannot be used.

COPY - 414 - TUSTEP

Reading numerical values from the working text

PL Starting position from which the text part containing
numerical values to be read either begins or is to be
selected, if this value does not equal 1 or differs
from the starting position specified in the parameter
POS. [I] <1st numerical value of the parameter POS>

AL Character strings marking the beginning of the text
part from which numbers are to be read. [IX]

EL Character strings marking the end of the text part
from which numbers are to be read. [IX]

(L Character strings serving as left parenthesis for
selecting the text part containing numbers to be read
(in case AL and/or EL have not been specified), or for
eliminating text parts already selected with AL and/or
EL. [IX]

)L Character strings serving as right parenthesis for
selecting the text part containing numbers to be read
(in case AL and/or EL have not been specified), or for
eliminating text parts already selected with AL and/or
EL. [IX]

LI Index for parameters AL, EL, (L and)L [I]

Two numerical values may be specified:

1st number: Specification analogous to parameter AEI
<1>

2nd number: Specification analogous to parameter KLI
<0>

XL Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
in the text part from which numbers are to be read by
the pair às second character string. [X]

LIV I-variables into which numbers are to be read. [I]

A minus sign placed directly before a number to be
read will be treated as a mathematical sign.

If fewer numbers are found than the number of
I-variables specified in this parameter, the remaining
I-variables will be set to 0.

TUSTEP - 415 - COPY

LDN Specifications parallel to LIV, indicating how many
decimal places located after the decimal point are to
be read. [I] <0>

LIZ Specifications parallel to LIV, indicating whether
Arabic numerals, Roman numbers or hexidecimal numbers
are to be read. If Roman or hexidecimal numbers are
selected, the corresponding specification in the
parameter LDN will be ignored. [I] <0>

One numerical value can be given for each I-variable
specified with paramter LIV:

 0 = Number in Arabic numerals
 1 = Roman numerals (letters: I,V,X,L,C,D,M)
22 = two hexidecimal numbers (= 1 Byte)
42 = four hexidecimal numbers (= 2 Bytes)

Executing compute statements

RR Instructions for compute statements, conditions and
jumps.

Please refer to "Compute statements" page 435 ff.

Inserting numerical values in the working text

PE Starting position from which substitution/insertion
(of numerical values, calculation numbers, the
replacement text, the running number, the page number)
is to be carried out, in case this is not equal to 1,
or differs from the starting position specified in the
parameter POS. [I] <1st numerical value given in the
parameter POS>

EIN Character strings marking the beginning of the text
part in which the numbers are to be replaced. [IX]

EIB Character strings marking the end of the text part in
which numbers are to be replaced. [IX ; MSCAN]

EIV I-variables, whose values are to replace the old
numbers. [I]

A minus or plus sign located directly before a number
to be replaced will be removed.

If less numbers are found in the working text (or in
the text part defined with EIN and/or EIB) than
variables specified, the numbers will be appended to

COPY - 416 - TUSTEP

the end of the working text or inserted at the end of
the defined text part (see, however, parameter EIK).

EDV Specifications parallel to EIV, indicating how many
positions before the decimal point are to be filled
out with blanks. [I] <0>

If the specified positions are to be filled out with
leading zeros instead of blanks, this can be specified
in parameter EIZ.

EDN Specifications parallel to EIV, indicating how many
digits are to be positioned after the decimal point.
[I] <0>

The values of I-variables can be inserted into the working text
in different forms: as normal numbers (Arabic numerals), Roman
numbers, or as a number with a check digit. The desired form can
be selected with the following parameter.

EIZ Specifications parallel to EIV, indicating in which
form the respective numerical value is to be inserted.
[I] <0,0,0,...>

One numerical value can be specified for each I-variable
specified with parameter EIV:

 0 = normal number (in Arabic numerals)
 1 = Roman numbers in lowercase letters
 2 = Roman numbers in uppercase letters
x3 = number immediately followed by its check digit
x4 = number separated from its check digit by a "-"
 5 = as in 0, except that positive numbers will be

filled out with leading zeros instead of blanks,
should this has been specified by the parameter
EDV.

26 = two hexidecimal numbers (= 1 Byte)
46 = four hexidecimal numbers (= 2 Bytes)

If a number with a check digit is to be inserted, the
type of check digit being employed must also be
specified. (See: "Check digits" page 434). Thus, when
the values 3 or 4 are chosen, 10 or 20 must always be
added to them: 10 is added when the check digit = the
difference between the sum of weighted digits and the
next multiple of 11; 20 is added when the check digit
= the difference between the sum of weighted digits
and the previous multiple of 11.

For information on calculating check digits, please
refer to "Check digits" (page 434).

EIK Character strings marking the positions after which a
number is to be replaced by a new value [IX]

TUSTEP - 417 - COPY

If the character string found in the working text has
been specified as the nth character string with
parameter EIK, each following number will be replaced
by the I-variable given as the nth value in parameter
EIV. A character string may occur more than once in
the text, with the corresponding I-variable being
inserted after each character string.

If no number is found in the working text up to the
next character string after which a number is again to
be inserted, the value of the nth I-variable will be
inserted immediately before this character string.
Correspondingly, this value will be inserted at the
end of the working text (or at the end of the text
part defined with EIN and/or EIB) if no such character
string follows.

If parameter EIK has been specified, the following
applies: I-variables specified with parameter EIV but
for which no corresponding character string has been
specified with parameter EIK will not be inserted. If
the nth character string specified in parameter EIK is
not found in the working text (or in a text part
defined with EIN and/or EIB) the nth I-variable
specified with parameter EIV will not be inserted
either. The same applies when the nth character
specified with parameter EIK is not a search string,
but an exception string.

Replacing character strings

PX Beginning position from which replacement is to be
carried out, in case this is not equal to 1, or
differs from the beginning position specified in the
parameter POS. [I] <1st numerical value of the
parameter POS>

AXX Character strings marking the beginning of the text
part in which character strings are to be replaced
(permissible only with the parameter XX). [IX]

EXX Character strings marking the end of the text part in
which character strings are to be replaced
(permissible only with the parameter XX). [IX]

(XX Character strings serving as left parenthesis when
defining a text part in which no character strings are
to be replaced (after it has been defined with the
parameters AXX and/or EXX, if present). (Permissible
only with parameter XX) [IX]

)XX Character strings serving as right parenthesis when
defining a text part in which no character strings are

COPY - 418 - TUSTEP

to be replaced (after it has been defined with the
parameters AXX and/or EXX, if present). (Permissible
only with parameter XX) [IX]

XXI Index for the parameters AXX, EXX, (XX and)XX [I]

Two numerical values can be specified:

1st number Specification analogous to parameter AEI
<1>

2nd number Specification analogous to parameter KLI
<0>

XX Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
by the pair às second character string. [X]

Replacing character strings with conditions

PX Starting position for replacing character strings

(Described in parameter PX on page 417)

ERN Character strings, after which replacement is to take
place. [IX]

ERB Character strings, up to which (exclusively)
replacement is to take place. [IX]

ERS Character strings to be replaced (not permissible in
combination with parameter XXB; parameter EZF is
required here). [IX]

EZF List of text parts which are to replace those
specified in ERS. In the text unit, the nth found
character string specified in ERS will be replaced by
the nth (in case variable S7 does not equal 0: by the
S7+nth) text part in EZF, or by the last character
string in EZF if fewer character strings have been
specified. [II]

XXB Pairs of character strings (and exception strings).
The first character string of each pair will be
replaced by the pair às second character string. [X]

ERZ Additional specifications for replacement [I]

TUSTEP - 419 - COPY

Four numerical values may be specified:

1st number: Number of character strings to be
replaced. <9999>

2nd number: Specifies how often a character string
given in ERN is to be searched (with each
search beginning after the previously
found character string) in order to
replace the number of character strings
specified with the first number. If ERN
has not been specified, each replacement
starts at the beginning of the text part.
<1>

3rd number: Indicates how many character strings in
ERN must have been found before
replacement is carried out for the first
time. <1>

4th number: Indicates whether a character string
specified in ERS is to replaced by one
specified in EZF, or whether it is to be
eliminated, in case another character
string specified in ERS immediately
follows in the text unit, or in case the
character string is located at the end of
the text unit <0>

0 = character string to be replaced, not
eliminated

1 = character string to be eliminated

Inserting previously defined text parts

The following parameters can be used to insert a previously
defined "replacement text" into the working text. The
replacement text can be preallocated with parameter ETV at the
start of the program; it can be redefined for each run of the
program in program part 6.

PE Starting position for inserting the replacement text.

(Described for parameter PE on page 415)

EEN Character strings after which the replacement text is
to be inserted. [IX]

EEB Character strings, up to which (exclusively) the
replacement text is to be inserted. [IX]

COPY - 420 - TUSTEP

ETE Character strings which are to be either replaced by
the replacement text or after which the replacement
text is to be inserted. [IX]

EEZ Additional specifications for inserting the
replacement text. [I]

Two numerical values can be specified:

In the following, the term "found character
string" refers to a character string that has
been given in parameter ETE as a search string
and which has been found in the working text
(or in a text part defined by EEN and/or EEB).

1st number: How often and where to insert <0>

0 = The replacement text is inserted once (for
the first character string found).
Parameter ETE is obligatory here. If no
character string specified in ETE is found,
the working text remains unchanged.

1 = as in 0, with the exception that if no
character string specified in ETE is found,
or the parameter ETE has not been
specified, the replacement text will be
inserted at the beginning of the working
text, or at the beginning of the text part
defined with the parameter EEN.

2 = as in 1, except that the replacement text
will be inserted at the end of the working
text, or at the end of the text part
defined with the parameter EEB.

3 = as in 0, except that the replacement text
will replace every found character string
(instead of just one replacement).

4 = A portion of the replacement text will be
inserted for every found character string:
the first portion for the first character
string found, the second portion for the
second string found, etc. The separator
character for subdividing the replacement
text must be specified with parameter ETR.

2nd number: Replace or insert <0>

0 = The replacement text is to replace the
respective character string.

1 = The replacement text is to be inserted
behind the respective character string.

ETR Separator characters used to subdivide the replacement
text. [IX]

TUSTEP - 421 - COPY

If 4 has been specified as the first numerical value
in parameter EEZ, the following applies:

A portion of the replacement text will be
inserted for every found character string: the
first portion for the first character string
found, the second portion for the second string
found, etc. Should the replacement text consist
of less portions than the number of found
character strings, blank strings will be
inserted; if it consists of more portions than
found character string, the remaining portions
will be ignored.

For all other cases:

If the replacement text consists of more than
one part, for each additional part the text
unit will be copied to the end and the
corresponding part of the replacement text will
be inserted.

Inserting a running number

PE Starting position for inserting a running number.

(Described under parameter PE on page 415)

LNR Character strings, after which the running number is
to be inserted. [IX]

The initial value of the running number can be set
with parameter LNB (see page 398).

If a separate running number is to be inserted instead
of the output number (= 1 + number of text units
already outputted), this must be specified with the
second numerical value in parameters LNZ below.

LNZ Additional specifications for LNR [I]

Four numerical values can be specified:

1st number: <0>

0 = The running number is to be inserted once
(in case parameter LNR has been specified).

1 = The running number is to be inserted any
number of times.

2 = As in 1, except the running number is to be
increased by 1 before being inserted a
further time (not possible when the second
number of this parameter =0).

COPY - 422 - TUSTEP

2nd number: <0>

0 = Instead of the running number, the output
number (= 1 + number of text units already
outputted) will be inserted.

1 = Increase running number (before insertion)
by 1 if it is to be inserted into the text
unit or would be inserted by being a
multiple of this parameter às fourth
numerical value.

2 = Do not alter running number
3 = Increase running number by 1 (regardless of

whether it will be inserted or not; if so,
it will be increased before insertion)

4 = Set running number to 0 (before any
insertion)

5 = Set running number to 1 (before any
insertion)

3rd number: Number of decimal places <0>

Fill out running number to the left with the
specified number of zeros.

4th number: Step size <1>

MOD Running number is to be inserted only if it is
a multiple of the number specified here.

Inserting / reading the page-line number

PE Starting position for inserting the page-line number.

(Described under parameter PE on page 415)

SNR Character strings, after which the page and, if
applicable, line number is to be inserted. [IX]

SNZ Additional specifications for SNR [I] <0,0,0>

Three numerical values can be specified:

1st number: Insert how often? <0>

0 = The page(-line) number is to be inserted
once.

1 = The page(-line) number is to be inserted
any number of times.

2nd number: What to insert <0>

0 = Insert page number only
1 = Insert page-line number
2 = Insert page-line-distinction number

TUSTEP - 423 - COPY

3rd number: Number of the output file <0>

If this number is not equal to 0, the
page(-line) number will not be inserted, but
read from the text. This number will be given
to the next record to be outputted to the nth
file (n = the number specified here), provided
that the last record already outputted to this
file does not have a higher number.

Defining positions (columns)

POS Positions, in case the text unit is not to be
processed starting from the first character position,
or in case characters are to be eliminated from
certain character positions. [I]

Three numerical values can be specified:

1st number: Starting position <1>

Starting position from which the text unit is
to be processed.

2nd number: End position <99999>

End position, up to which characters are to be
either saved or eliminated (no effect when this
parameter às third value =0).

3rd number: Mode <0>

0 = The characters from position 1
(inclusively) to the position specified by
this parameter às 1st number (exclusively)
are to be left unchanged.

1 = The characters preceding the position
specified by this parameter às 1st number
and following the position specified by
this parameter às 2nd number are to be
eliminated after processing is completed.

2 = The characters at the position specified by
this parameters 1st number up to and
including those at the position specified
by this parameters 2nd number will be
eliminated after processing is completed.

 Note: The first number of this parameter is also
used as the default value for parameters PV, PK,
PL, PX, PE. If different settings are desired, the
desired position specifications (e.g. 1) must be
additionally made with each of these parameters.

COPY - 424 - TUSTEP

PROGRAMM PART 3 (Output, with pass specification):

Printing messages

MLD Message (text part) to be written to the LISTING file
together with the text unit. [XI]

Each text part will be printed in a separate line. The
first character of each text part must be a feed
character ("-" for new page, "1", "2", to "7" for line
feeds of 1, 2 to 7 lines).

If the character "@" immediately follows the feed
character in the first text unit, this will be
regarded as an error message. The program will
nevertheless continue, but will end with errors upon
completion. This is of consequence when the error stop
option is in effect (see the command #ERROR STOP).

If the message contains x...x, the x-characters will
be replaced by the value of variable S9 (cf. page
437).

In case this parameter has been specified, the text
unit will not be written to the DESTINATION file if ZD
has not also been specified.

Determining the DESTINATION file

ZD Destination file to be used for output in the present
pass [I] <1>

PROGRAMM PART 3 (Output, without pass specification,
valid for all passes):

Determining the beginning and end of lines

During output, the working text can be divided into lines. For
this purpose, character strings can be specified, before or
after which a line break is to be carried out.

ZA Character strings, before which a new line is to be
started (beginning of line). [IX]

ZE Character strings, after which a new line is to be
started (end of line). [IX]

TUSTEP - 425 - COPY

If lines created with the help of parameter ZA and ZE are so
long that they must be subdivided into more than one record on
the basis of the specifications concerning record length in
parameter SL (see below), the following parameters can be used
to specify certain character strings before or after which lines
may be subdivided. A line will be divided at such a character
string only when division at the next character string would
fail to produce a line corresponding to the desired maximum line
length.

ZAB Character strings marking the start of a new line in
case subdivision is necessary. Subdivision will be
carried out before the character string. [IX]

ZEB Character strings marking the end of a line if a new
line is necessary. Subdivision will be carried out
after the character string. [IX]

Determining the beginning and end of pages

During output, record numbering can be advanced to the next page
for lines starting with a certain marker or after lines ending
with a certain marker.

SA Character strings marking lines whose record number is
to be advanced to the next page number. [VIII a]

The marker is effective only when it is located
directly at the beginnning of the line. If necessary,
parameter ZA can be used to accomplish this.

SE Character strings marking the lines after which the
next record number is to be advanced to the next page
number. [VIII b]

The marker is effective only when it is located
directly at the end of the line. If necessary,
parameter ZE can be used to accomplish this.

If a new page is to be started for a line on the basis of both
parameters SA and SE, the line number will be advanced by one
page only, instead of two.

COPY - 426 - TUSTEP

Inserting blank lines during output

During output, a blank line may be inserted before lines
starting with a certain marker, or after lines ending with a
certain marker.

LZV Character strings used to mark lines before which a
blank line is to be inserted. [VIII a]

The marker is effective only when located directly at
the beginning of the line. If necessary, parameter ZA
can be used to accomplish this.

LZN Character strings used to mark the lines after which a
blank line is to be inserted. [VIII b]

The marker is effective only when it is located
directly at the end of the line. If necessary,
parameter ZE can be used to accomplish this.

If a blank line is to be inserted between two lines on the basis
of both parameters LZV and LZN, only one blank line (instead of
two) will be inserted.

Replacing character strings during output

XXX Pairs of character strings (and exception strings). On
output, the first character string of a pair will be
replaced by the pair às second character string. [X]

Eliminating blanks at the beginning and end of lines

BLU Specifies whether blanks at either the beginning or
end of a line are to be eliminated before output. [I]
<0,0>

Two numerical values can be specified:

1st number: Blanks at the beginning of a line

0 = Do not eliminate blanks at the beginning of
a line

1 = Eliminate blanks at the beginning of a line

2nd number: Blanks at the end of a line

0 = Do not eliminate blanks at the end of a
line

1 = Eliminate blanks at the end of a line

TUSTEP - 427 - COPY

Eliminating blank lines on output

LZU Specifies whether blank lines are to be eliminated.
[I] <0>

One numerical value can be specified:

0 = Include blank lines in the output
1 = Eliminate blank lines

Blank lines inserted with parameters LZV or LZN will
always be printed.

Determining record length

SL Length of output records [I]

In case this parameter is not specified and the line
division of the input data cannot be retained, lines
will not be subdivided.

Two numerical values can be specified:

1st number: Maximum length of lines to be subdivided
because they are longer than the second
number specified in this parameter.
<99999>

LNG2 Maximum length of lines which are not to be
subdivided. <100 or value of 1st number if
larger than 100>

Before output, a line having more characters than that
specified with the second number will be subdivided
into output records. The line will be subdivided into
records having a maximum length specified by this
parameter às first number. The line is divided at any
blank which is not preceded by a "-" (exception: a
blank preceded by " -", since this "-" represents a
dash and can therefore not be confused with a hyphen).
If such a division point cannot be found within the
number of characters specified by this parameter às
first number, the next possible division point will be
selected.

Determining record numbering

NR Specifications for numbering output records [I]

Three numerical values can be specified:

1st number: Page number with which output is to start
(999999 for the next available page).
<MODE=-STD-: 999999; MODE=+: 1>

COPY - 428 - TUSTEP

2nd number: Maximum number of records per page.
<MODE=-STD-: 1000000; MODE=+: 60>

3rd number: Increment for numbering when a new record
number must be allocated.
<MODE=-STD-: 10; MODE=+: 1000>

PROGRAMM PART 4 (working text ==> basic text):

Redefining the basic text

No parameters

PROGRAMM PART 5 (comparison/working text ==> stored comparison
text)

Defining stored comparison texts

VTZ Specifies for which passes the comparison text stored
in this pass is to be valid. [I]

PROGRAMM PART 6 (working text ==> replacement text):

Defining replacement texts

ETZ Specifies for which passes the replacement text stored
in this pass is to be valid. [I]

TUSTEP - 429 - COPY

PROGRAMM PART 7 (working text ==> stored text):

Replacing/supplementing the stored text by the working text

MTD Specifications for defining the stored text [I] <0>

One numerical value can be specified:

0 = Stored text to be replaced by the working text
1 = Working text to be appended to the existing stored

text.
2 = Working text to be inserted before the existing

stored text.

PROGRAMM PART 8 (stored text <==> working text):

Exchanging stored text and working text

No parameters

PROGRAMM PART 9 (stored text ==> working text):

Replacing/supplementing the working text by the stored text

MTH Specifications for retrieving stored text [I] <0>

Four numerical values can be specified:

0 = Stored text to replace working text
1 = Stored text to be appended to existing working

text.
2 = Stored text to be inserted before the existing

working text.

If 3 is added to these values (i.e., if 3, 4 or 5 is
specified instead), the stored text will be erased
after it has been moved.

COPY - 430 - TUSTEP

FINAL STEP

Printing calculated numerical values

RRR Compute statements for calculating the final results,
which can be outputted using the following parameters.

For a more detailed description, see "Compute
statements", page 435 ff.

DDD Text to be outputted to the LISTING file. A new line
will be started at each separator character; the first
character after the separator character will be
interpreted as a line feed character. [II]

DIV I-variables to be inserted in the text specified in
parameter DDD (at the position x...x) before printing.
[I]

Values will be inserted in the specified order at
positions marked by a sequence of at least 2 "x"s.
Each position must have enough "x"s to accomodate the
value of the corresponding I-variable; if too few "x"s
have been provided, they will remain in the text. If
more I-variables have been specified than the number
of positions marked with "x"s, the excess I-variable
values will be ignored.

DDN Specification parallel to I-variables specified in
parameter DIV: establishes how many digits are to be
positioned after the decimal point. [I] <0,0,0,...>

Saving selector switch settings to the command level

WSR Selector switches whose settings are to be saved to
the selector switches at the command level (i.e.,
selector switches which can be either set or cancelled
using the command #SWITCH). [I]

Up to 7 numerical values (number of the selection
switch 1 to 7) may be specified. Selector switches not
specified here remain unaltered.

TUSTEP - 431 - COPY

Alphabetical List of Parameters

The character "n" in the parameter abbreviation stands for
integers 1 to 9 (e.g. AKn stands for AK1, AK2 to AK9).

(Kn Copy: excluding text parts 411
(L Reading numbers: excluding text parts 414
(TT Replacing text parts: exclusion 412
(V Compare: excluding text parts 404
(XX Replace: excluding text parts 417
)Kn Copying selecting text parts 411
)L Reading numbers: excluding text part 414
)TT Replacing text parts: exclusion 412
)V Compare: excluding text parts 404
)XX Replacing strings: exclusion 417
AA Start of a text unit 401
AE End of a text unit 401
AEI Copying: Index for AKn and EKn 410
AKn Copying: Starting marker 410
AL Reading numbers: starting marker 414
ANR Creating a text unit by number 401
ATT Replacing text parts: starting marker 412
AUM Inverting: starting marker 413
AV Comparing: starting marker 404
AXX Replacing strings: starting marker 417
BER Defining an area from the SOURCE file 400
BLU Eliminating blanks 426
DDD Printing final message: text 430
DDN Printing final messages: number of digits after decimal

point . 430
DIV Printing final messages: I-variables 430
DPB Calculating print positions 413
EDN Inserting numbers: number of digits after decimal point

 . 416
EDV Inserting numbers: number of digits before decimal point
 . 416
EEB Replacement text: end marker for insertion 419
EEN Replacement text: beginning marker for insertion . 419
EEZ Additional specifications for replacement text insertion

 . 420
EIB Inserting numbers: end marker 415
EIK Inserting numbers: marker 416
EIN Inserting numbers: beginning marker 415
EIV Inserting numbers: I-variables 415
EIZ Inserting numbers: additional specifications . . . 416
EKn Copying: end marker 410
EL Reading numbers: end marker 414
ERB Replacing: end marker 418
ERG Copying: adding character strings 412
ERN Replacing: beginning marker 418
ERS Replacing: character strings to be replaced 418
ERZ Replacing: additional specifications 418
ETE Replacement text: character strings to be replaced 420
ETR Replacement text: separator characters 420
ETT Replacing text parts: end marker 412
ETV Replacement text: initial text 398
ETZ Replacement text: additional specifications 428
EUM Inverting: end markers 413

COPY - 432 - TUSTEP

EV Comparing: end markers 404
EXX Replacing strings: end markers 417
EZF Replacing: text parts to be inserted 418
GTU Basic text: partitioning 402
KEN Marker for identifying text units 403
KLI Copying: index for (Kn and)Kn 411
KSP Jump addresses according to markers 403
LDN Reading numbers: number of digits after decimal point 415
LI Reading numbers: Index for AL, EL, (L and)L . . . 414
LIZ Reading numbers: Arabic numerals or Roman numbers . 415
LIV Reading numbers: I-variables 414
LNB Starting value for running number 398
LNR Inserting running number 421
LNZ Inserting running number: additional specifications 421
LZN Blank line after specified markers 426
LZU Eliminating blank lines 427
LZV Blank line before specified markers 426
MAX Maximum text units for test runs 400
MLD Output of message 424
MTD Defining stored text 429
MTH Recalling stored text 429
NR Numbering records 427
NR+ Selecting data based on SOURCE file record numbers 400
NR- Excluding data based on SOURCE file record numbers 400
NUM Inverting: character strings not to be inverted . . 413
PE Insertion: starting position 415
PK Copying: starting position 410
PL Reading numbers: starting position 414
POS General position specifications 423
PV Comparing: starting position 403
PX Replacing: starting position 417
PZP Comparing: test check digit 409
R Compute statements for initial variable settings . 398
RR Compute statements, conditions and jumps 415
RRR Compute statements for calculating final results . 430
SA Beginning-of-page markers 425
SE End-of-page markers 425
SL Length of output records 427
SNR Inserting page number 422
SNZ Inserting page number: additional specifications . 422
SPn Jump table for jump after program part n 399
SPJ Jump table for jump when conditions are met 399
SPN Jump table for jump when conditions are not met . . 399
SPR Jump table for individual passes 399
SPW Jump table for jump depending on selector switch setting

 . 399
STR Undo hyphenation 401
SWS Special selector switches 396
T Text for the working text 410
T+ Positive selection for entire comparison text . . . 406
T+U Positive selection for entire comparison text . . . 406
T- Negative selection for entire comparison text . . . 406
T-U Negative selection for entire comparison text . . . 406
TA+ Positive selection for beginning of comparison text 406
TA- Negative selection for beginning of comparison text 407
TE+ Positive selection for end of comparison text . . . 406
TE- Negative selection for end of comparison text . . . 407
TTI Replacing text parts: index for ATT, ETT, (TT and)TT 412
TTT Replacing text parts: text parts 412
TUT Replacing text parts: pairs of text parts 413

TUSTEP - 433 - COPY

VI Comparing: index for AV, EV, (V and)V 404
VGL Comparing: comparison with stored comparison text . 408
VSP Jump depending on variable 403
VTB Comparing: character table 408
VTV Comparison text: initial text 398
VTZ Comparison text: additional specifications 428
WS+ Positive selector switch condition 403
WS- Negative selector switch condition 403
WSG Selector switches: initial setting 397
WSH Selector switches: retrieve 397
WSL Selector switches: cancel 409
WSR Selector switches: save 430
WSS Selector switches: set 409
WSU Selector switches: reverse 409
X Replacing character strings on input 402
XL Reading numbers: replacing character strings . . . 414
XV Comparing: replacing character strings 404
XX Replacing character strings 418
XXB Replacing: with conditions 418
XXI Replacing: index for AXX, EXX, (XX and)XX 418
XXX Replacing character strings during output 426
ZA Beginning-of-line marker 424
ZAB Conditional beginning-of-line marker 425
ZD Specifying destination file 424
ZE End-of-line marker 424
ZEB Conditional end-of-line marker 425
ZF+ Positive selection using character strings in comparison

text . 406
ZF- Negative selection using character strings in comparison

text . 407
ZF Check order and frequency of character strings . . 407
ZFH Maximum permissible frequency of character strings 408
ZFM Minimum required frequency of character strings . . 408
ZFP Comparing: check for specified character strings only 405
ZFZ Count character strings in comparison text 405
ZSP Jump conditioned by number of counted character strings

 . 405

COPY - 434 - TUSTEP

Check digits

Check digits are calculated on the basis of module 11 with a
weighting of 10 to 2. In other words, the last digit (ones) of a
number is multiplied ("weighted") by 2, the next-to-last digit
(tens) is multiplied by 3, etc. The resulting products are then
added. Type 1 check digits are arrived at by calculating the
difference of this sum and the next higher multiple of 11. Type
2 check digits are arrived at by calculating the difference of
this sum and the preceding multiple of 11. If the sum of the
products itself is divisible by 11, it has the check digit 0. If
the check digit has the value 10, the Roman number X is used.

Example:

 Number: 1 9 8 5
 Weight: 10 9 8 7 6 5 4 3 2
Product: 0 + 0 + 0 + 0 + 0 + 5 + 36 + 24 + 10 = 75

The type 1 check digit for the number 1985 is thus 2 (77-75),
the type 2 check digit for the same number is 9 (75-66).

TUSTEP - 435 - COPY

Compute statements

Compute statements must be separated from each other by a
semicolon. Blanks are insignificant and may be inserted at any
place to make the compute statements more readable. A compute
statement may also be interupted at any place and continued on
the next line (with the same parameter identification).

In the following, a few terms will be defined which are
subsequently used for defining individual compute statements.

Variables

A variable is a storage location which is identified by a name
and contains an integer value. Each of these variables has a
unique name by which the contents of the variable can be
accessed. This access is made by placing the name of the
variable at the location where its numerical value is defined
(cf. "Value assignment") or required (cf. "Arithmetic
expression"). The names of the variables are predefined and may
not be chosen freely. At the beginning of the program, all
variables are assigned the value zero. The largest numerical
value that may be saved as a variable depends on the computer
being used; in most cases this is the value 2 147 483 647.

- H-variables

 10 H-variables (Help variables) are defined with the names H0,
H1 to H9.

- I-variables

 I-variables (100 storage locations) can be addressed in two
ways: either as a simple variable with the names I0, I1 to
I99, or as an indexed variable in the form of I(index). In
this case, the index may be any arithmetic expression (see
below). However, the value of the arithmetic expression must
lie between 0 and 99 (inclusively).

 These variables differ from H and B variables in that they can
be assigned numerical values not only by value assignment (see
below), but also by reading numbers located in the data to be
processed (cf. "Reading numerical values" page 414). In
addition, the numerical values stored in these variables can
not only be used in arithmetic expressions (see below), but
can also be inserted into the data to be processed (cf.
"Inserting numerical values" page 415 f).

- B-variables

 These variables may only be addressed as indexed variables in
the form B(index). In this case, the index may be any
arithmetic expression (see below). However, the value of the
arithmetic expression must lie between 0 and 99 (inclusively).

COPY - 436 - TUSTEP

- S-variables

 Each S-variable (special variables) has its own significance:

 S0 The contents of this variable show the present length of
the working text. If the value n is subtracted from S0,
the last n characters of the working text will be
eliminated. Please note that the contents of S0 may not be
smaller than 0. The working text cannot be enlarged.

 S1 A numerical value is stored in this variable every time
the parameter DPB (see page 413) is processed. It
represents the number of printing positions needed by the
working text when it is printed. Altering the contents of
this variable has no significant effect.

 S2 Current value of the running number (cf. "Inserting a
running number" page 421). If necessary, this variable may
be altered.

 S3 The contents of this variable show the length of the last
comparison text. The comparison text is defined each time
program part 1 is executed as long as this program part
has not already been exited using one of the parameters
SPW (or the corresponding jump address of parameter SPR),
VSP or KSP. Altering the contents of this variable has no
significant effect.

 S4 A numerical value is stored in this variable each time the
parameter ZF (cf. page 407) is processed. Its contents
show the parameter position of the character string first
found in comparison text. If, however, the order of
character strings found in the comparison text does not
correspond to the order of character strings in the
parameter, or if the conditions required by parameters ZFM
and ZFH are not met, the contents of variable S4 show the
position in parameter ZF of the character string which
either violated the character string order or did not meet
the given conditions. Altering the contents of this
variable has no significant effect.

 S5 A numerical value is stored in this variable each time the
parameter ZFZ (cf. page 405) is processed. Its contents
show the number of character strings found in the
comparison text. Altering the contents of this variable
has no significant effect.

 S6 A numerical value is stored in this variable each time the
parameters ZFZ (cf. page 405) is processed. Its contents
show the position in the parameter of the character string
first found in the comparison text. Altering the contents
of this variable has no significant effect.

 S7 The contents of this variable are evaluated each time the
parameters ERS and EZF (cf. page 418) are processed.

 S8 The contents of this variable are evaluated each time the
parameter VSP (cf. page 403) is processed.

TUSTEP - 437 - COPY

 S9 The numerical value stored in this variable can be
included in a message generated by parameter MLD (cf. page
424).

 S10 The contents of this variable can be used to define which
record number (page-line-distinction number) is to be
stored in the variables S11 and S12 before executing the
parameter RR. If S10 has the value 0, S11 and S12 will
contain the record number of the present text unit. If S10
has the value n, S11 and S12 will contain the record
number of the record last written to the nth DESTINATION
file. If, however, the record number for the next record
of this file has already been defined (see S13), then S11
and S12 will contain this predefined record number. If the
numerical value in S10 is smaller than zero or greater
than the number of DESTINATION files specified when
calling up the program, the program will terminate and
display the corresponding error message.

 S11 This variable contains that part of the record number
which specifies the page number (see also S10 and S13).

 For a description of what a record number is and how it is
written, please refer to the "Files" chapter in "TUSTEP
Basics".

 S12 This variable contains that part of the record number
which specifies the line and distinction number (see also
S10 and S13).

 For a description of what a record number is and how it is
written, please refer to the "Files" chapter in "TUSTEP
Basics".

 S13 The contents of this variable can be used to define which
record number (page-line-distinction number) is to be
replaced by the contents of the variables S11 and S12
after executing the parameter RR. If S13 has the value 0,
the record number of the present text unit will be
replaced. If S13 has the value n, S11 and S12 will be used
to define the record number of the next record to be
written to the nth DESTINATION file. If the numerical
value in S10 is smaller than zero or greater than the
number of DESTINATION files specified when calling up the
program, the program will terminate and display the
appropriate error message.

 S14 The contents of this variable show how characters are to
be eliminated from the beginning of the working text.
Please note that the contents of S14 may not be larger
than that of S0 (length of working text). Characters will
be eliminated at the completion of the compute statements
in which these variables have been assigned a value.
Afterwards, the value of variable S14 will be set to zero
automatically.

- Selector switches

 16 variables with the names WS1, WS2 to WS16 have been defined
as selector switches which may contain the numerical values 0

COPY - 438 - TUSTEP

and 1 only. A selector switch is cancelled if it contains the
numerical value 0, it is set if it contains the numerical
value 1. In a value assignment (see below) where a selector
switch is specified to the left of the equals sign, the
arithemtic expression (see below) to the right of the equals
sign may not be an arbitrary one, but must be one of the
numbers 0 and 1. A selector switch can be altered by means of
a value assignment, as well as with the parameters WSL, WSS
and WSU (see page 409). In addition, a selector switch can be
used not only in arithmetic expressions, but also with the
parameters WS+ and WS- (cf. page 403).

Functions

Functions are available as an aid in carrying out calculations.
A function is called with its name and one or more arguments.
Arguments are separated from each other by a comma and are
entered in brackets after the function name. They may take the
form of any arithmetic expression (see below). If a function
with these arguments is called, a numerical value - the function
value - is calculated according to the function às
specifications.

The following functions are available:

 (For simplicity às sake, numbers are used for the individual
arguments in the following examples. In actual practice,
integer variables or the names of macro variables are more
commonly used instead of numbers.)

- Calculating the absolute value: IABS (arg)

 The function value obtained is the absolute value of arg.

 Example: The function value of IABS(-4) is 4.

- Calculating the minimum: MIN (arg1, arg2)

 The function value obtained is the smaller of the two
numerical values arg1 and arg2.

 Example: The function value of MIN(-5,+3) is -5.

- Calculating the maximum: MAX (arg1, arg2)

 The function value obtained is the larger of the two numerical
values arg1 and arg2.

 Example: the function value of MAX(-5,+3) is +3.

TUSTEP - 439 - COPY

- Calculating the division remainder: MOD (arg1, arg2)

 The function value obtained is the remainder resulting from
the division of arg1 by arg2.

 Example: the function value of MOD(234,10) ist 4.

- Interval function: IV (arg, arg1, arg2, arg3, ...)

 This function can be used to determine which interval the
numerical value arg belongs to. A function value of zero is
obtained if arg is less than arg1; the value 1 is obtained if
arg is greater than or equal to arg1 but less than arg2; the
value 2 if arg is greater than or equal to arg2 but less than
arg3, etc. The number of arguments is not limited for this
function. However, arg1 must be less than arg2, arg2 must be
less than arg3 etc.

 Example: the function value of IV(16,1,10,100,1000) is 2.

- Calculating a check digit: IP (arg)

 A function value is obtained which is a number between 0 and
10 (inclusively). It is calculated according to the following
rule: The last digit of the numerical value of arg is
multiplied by 2, the next-to-last by 3, the third-to-last by
4, etc. The resulting products are then added. If this sum is
a multiple of 11, then the function value is zero. Otherwise
the difference between the sum and the next multiple of 11
serves as the function value. If the numerical value of arg is
less than 1 or greater than 999999999 the function value is
-1, for in this case the check digit is not defined.

- Date function: ID (day, month, year, number, mode)

 With this function it is possible to calculate and convert
calendar dates. This function is controlled by the argument
mode.

 To facilitate the calculation of calendar dates, the days are
numbered in succession. Thus each day bears a unique number,
the day number.

 mode=0: actual date
Input: none
Output: current date in the arguments day, month, year

and current day number in the argument number

 mode=1: Calculating the day number by giving the date
Input: Date in the arguments day, month, year
Result: Day number in the argument number

 mode=2: Calculating the date by giving the day number
Input: Day number in the argument number
Result: Date in the arguments day, month, year

COPY - 440 - TUSTEP

 mode=3: Calculating the date of Easter
Input: Year number in the argument year
Result: Date of Easter in the arguments day, month,

year and the corresponding day number in the
argument number

 mode=4: Calculating the interval between two calendar dates
Input: Date of the first calendar date in the

arguments day, month, year and day number of
the second (later) calendar date in the
argument number

Result: The interval between the two dates in years,
months and days (in the arguments year, month
and day) as well as in days (in the argument
number)

 The function value so obtained - independent of the value of
the argument mode - is the day of the week (1=Monday,
2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday,
7=Sunday) whose date is given in the arguments day, month and
year. If there is an illegal input, the function value is zero
(e.g. if mode has a value not defined, or if an improper date
is given, such as the 29th of February in a non-leap year).

 Calculations are based on the Gregorian calender. However, if
a date occurs before October 15, 1582, the Julian calendar is
used. If the Julian calendar is to be used for later dates as
well, the respective negative value is to be given as the
argument mode.

 Example: Calculating the date of Pentecost/Whitsuntide for the
year 1982

H0 = ID (H1, H2, 1982, H4, 3);
H0 = ID (H1, H2, H3, H4+49, 2);

 First, the date of Easter is calculated. It does not matter
which numerical values H1, H2 and H4 contain before the date
function is called up. Because 3 has been given as the mode,
only the argument year is evaluated. The day of the week, day
and month of Easter are stored in H0, H1 and H2, but are not
used for further processing. The day number of Easter is
stored in H4. Because the interval between Easter and
Pentecost is exactly 7 weeks (= 49 days), the day number of
Pentecost is obtained by adding 49 to the day number of
Easter. This day number is then converted into the respective
calendar date. It does not matter which numerical values H1,
H2 and H3 contain before the date function is called up.
Because 2 has been given for the mode, only the argument
number is evaluated. The day of the week (7 for Sunday) is
stored in H0, day, month and year of the date of Pentecost are
stored in H1, H2 and H3.

TUSTEP - 441 - COPY

Arithmetic expressions

An arithmetic expression is a rule for computing by which a
numerical value is defined. It consists of operands, arithmetic
operators and pairs of brackets.

An operand may be an (integer) number, a (simple or indexed)
variable or a function call. In the simplest case, an arithmetic
expression consists of only one of these three operands.

The arithmetic operators for the four basic mathematical
operations are:

+ Addition * Multiplication
- Subtraction / Division

When the arithmetic expression is evaluated, multiplication and
division are executed prior to addition and subtraction. If
there are several consecutive multiplication and division
operations, they are carried out from left to right. The same
holds true for consequtive addition and subtraction operations.
Deviations from this rule can be made by placing brackets at the
appropriate positions.

Please note that division is carried out with integers only:
remainders will be lost and there is no rounding. For example,
3/2 results in the value 1 (not 1.5); 3/2*4 will give the value
4 (not 6).

Relation conditions

A relation condition is where two numerical values are compared.
It consists of two arithmetic expressions which are connected by
a relation operator:

arithm. expression relation operator arithm. expression

There are six relation operators:

.EQ. equal .NE. not equal

.GT. greater than .LT. less than

.GE. greater or equal .LE. less or equal

A relation condition is either satisfied, resulting in the
logical value TRUE, or it is not satisfied, resulting in the
logical value FALSE.

Examples: I1.EQ.0 is satisfied if I1 contains the
numerical value 0, otherwise it is
not satisfied.

MOD(I1,10).LT.5 is satisfied if the division of I1
by 10 results in a remainder which
is less than 5, otherwise it is not
satisfied.

I1+I2.EQ.4*I3 is satisfied if the addition of I1
and I2 results in a value 4 times

COPY - 442 - TUSTEP

larger than I3, otherwise it is not
satisfied.

Logical expressions

A logical expression consists of relation conditions which may
be connected by logical operators. In its simplest case, a
logical expression may also have only one relation condition.

The logical operators are:

.AND. logical AND

.OR. logical OR

A logical expression is evaluated in a manner analogous to an
arithmetic expression. The result is either the logical value
TRUE or the logical value FALSE. When the logical expression is
evaluated, the logical AND is executed prior to the logical OR.
This order may be changed by the appropriate use of brackets.

Examples: I1.EQ.I2 has the logical value TRUE if
I1 contains the same
numerical value as I2,
otherwise it has the logical
value FALSE.

I1.GE.1 .AND. I1.LE.8 has the logical value TRUE if
I1 contains a numerical value
from 1 and 8 (inclusively),
otherwise it has the logical
value FALSE.

I1.EQ.0 .AND. (I2.EQ.1 .OR. I2.EQ.2) has the logical
value TRUE if I1 contains the
numerical value zero and I2
contains the numerical values
1 or 2, otherwise it has the
logical value FALSE.

Value assignments

A value assignment has the form:

variable = arithmetic expression

A value assignment causes the arithmetic expression to be
evaluated. The result is stored in the integer variable (simple
or indexed) placed to the left of the equals sign. In this
statement, the equals sign has the function of an assignment
operator and thus differs from its usual mathematical function.

Examples: H1 = 0; I1 = I1 + 1; I(I1) = MAX (H2,H3);
I1 = I1 * (H1 + H2); I0 = MOD (S12, 1000);

TUSTEP - 443 - COPY

Jump statements

A jump statement has the form:

GO TO arithmetic expression

The use of a jump statement causes the arithmetic expression to
be evaluated. The result is interpreted as the jump destination
and the corresponding position in the program is jumped to. The
value of the ones position in the result designates the program
part; the hundreds and tens positions show the number of the
pass.

Examples: GO TO 0; GO TO H1 * 10 + 2; GO TO B(I1)

In addition, there are two special jump statements:
The statement

GO ON

results in a jump which skips all following compute statements
of the same pass.
The statement

EXIT

may be located only between the statements LOOP and END LOOP
(cf. loop statements) and results in a jump which skips all
following statements until the next END LOOP.

Conditional statements

A conditional statement lets the user specify that one or more
successive instructions are to be executed only under certain
conditions. These conditions are specified by a logical
expression. There are three forms of conditional statements:

1.) If a single instruction (in this case, this may be only a
value assignment or a jump statement) is to be executed only
under the conditions specified in the logical expression, the
following form may be chosen:

IF (logical expression) instruction

The instruction specified after the brackets is executed only if
the logical expression in brackets has the value TRUE. Otherwise
the instruction is skipped.

Examples: IF (I1.EQ.0) I2 = I2 + 1;
IF (MOD(S12,1000).EQ.0) GO TO 3;

2.) If the following form of the conditional statement is
chosen, one or more instructions of any type may be executed on
the basis of the conditions specified in the logical expression.

COPY - 444 - TUSTEP

IF (logical expression) THEN;
 instructions;
END IF

The instructions located between THEN and END IF are executed
only if the logical expression in brackets has the value TRUE.
Otherwise, these instructions are skipped.

Examples: IF (I1.EQ.60) THEN; S11=S11+1; S12=1000; END IF;
IF (WS1.NE.0) THEN; I2=I2+1; GO TO 0; END IF;

3.) The third form of the conditional statement is an extension
of the second form. With it, two sequences of instructions may
be given, of which one is executed and the other one is skipped.

IF (logical expression) THEN;
 instructions;
ELSE;
 instructions;
END IF

If the logical expression in brackets has the value TRUE, the
instructions located between THEN and ELSE are executed and the
instructions between ELSE and END IF are skipped. If the logical
expression has the value FALSE, the instructions between THEN
and ELSE are skipped and the instructions between ELSE and
END IF are executed.

Loop statements

Loop statements make it possible to run a series of instructions
as often as required. This series of instructions is initiated
by the statement

LOOP

and terminated by the statement

END LOOP.

There are three ways to exit from this series of instructions:
- The statement EXIT will cause a jump to the following END

LOOP.
- The statement GO TO causes a jump to a specified program part.
- The statement GO ON can be used to terminate the execution of

compute statements, i.e. all subsequent statements of this
pass (including those located after a END LOOP statement) are
skipped.

Example: The variables I(1) to I(32) are to be set to zero. Here
the variable H0 is used as the counter and as the
index.

H0 = 1;
LOOP;

TUSTEP - 445 - COPY

 I(H0) = 0;
 IF (H0.EQ.32) EXIT;
 H0 = H0 + 1;
END LOOP;

COPY - 446 - TUSTEP

Logical program structure

The following page shows the logical program structure as used
for three passes. The default values for parameters SPR (or SP0,
SPW, SPN etc.) have also been specified for three passes. Each
time a pass is carried out, the default values for the following
pass are increased by 10. An exception is parameter SPN, whose
default value remains 0 for all passes, and the two parameters
SPW and SP2. SPW and SP2 follow the same rules for default
values as outlined above for all passes except for the final
one: here the default value for parameter SPW is 8; for SP2 it
is 3.

Key to chart abbreviations:

BT basic text
CT comparison text
RT replacement text
SCT stored comparison text
SPJ jump table for jump when conditions are met (yes)
SPN jump table for jump when not all conditions are met (no)
SPn jump table for jump after program part n
SPW jump table based on selector switch settings
SS selector switch
ST stored text
suc. successful
WT working text

TUSTEP - 447 - COPY

 [SPR] [SPR]
[SPR]

 0 10 20 30

File £¤BT BT £¤ WT BT £¤ WT BT £¤ WT
 éêë10 [SP0] éêë11 éêë21 éêë31

 11 21 31

 SS INQUIRY SS INQUIRY WS INQUIRY
 [SPW] suc. éêë21 suc. éêë31 suc. éêë 8
 COMPARE COMPARE COMPARE
 WT £¤ CT WT £¤ CT WT £¤ CT
 [SPN] no éêë 0 no éêë 0 no éêë 0
 [SPJ] yes éêë12 yes éêë22 yes éêë32
 éêë12 éêë22 éêë32

 12 22 32

 PROCESSING PROCESSING PROCESSING
 WT £¤ WT WT £¤ WT WT £¤ WT
 [SP2] éêë21 éêë31 éêë 3

 3 13 23 33

 WT£¤File WT£¤File WT£¤File WT£¤File
 éêë 0 [SP3] éêë10 éêë20 éêë30

 4 14 24 34

 ERROR WT £¤ BT WT £¤ BT WT £¤ BT
 éêë 0 [SP4] éêë11 éêë21 éêë31

 5 15 25 35

CT/WT£¤SCT CT/WT£¤SCT CT/WT£¤SCT CT/WT£¤SCT
 éêë 0 [SP5] éêë10 éêë20 éêë30

 6 16 26 36

 WT £¤ RT WT £¤ RT WT £¤ RT WT £¤ RT
 éêë 0 [SP6] éêë10 éêë20 éêë30

 7 17 27 37

 WT £¤ ST WT £¤ ST WT £¤ ST WT £¤ ST
 éêë 0 [SP7] éêë10 éêë20 éêë30

 8 18 28 38

 ERROR ST rs WT ST rs WT ST rs WT
 STOP [SP8] éêë11 éêë21 éêë31

 9 19 29 39

 ST £¤ WT ST £¤ WT ST £¤ WT
 STOP [SP9] éêë11 éêë21 éêë31

TUSTEP - 448 - COPY

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 C O R R E C T

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

CORRECT - 450 - TUSTEP

Survey:

Command . 451

 Specifications 451
 Features 452

Correcting instructions 453

 Specifying text areas to be corrected 454
 Short cuts for specifying a text area 454
 Notes . 455
 Correction protocol 456

Parameters 457

 Selecting data 457
 LISTING file settings 457
 Output record length and numbering 459

 Alphabetical list of parameters 460

TUSTEP - 451 - CORRECT

Command:

#CORRECT

Specifications:
SOURCE= file Name of the file containing the data

to be corrected

= -STD- The standard TEXT file contains the
data to be corrected

DESTINATION = fileName of the file to which the
corrected data are to be written

= -STD- The corrected data are to be written
to the standard TEXT file

MODE = -STD- * Retain numbering of records if
possible

= + Renumber records (in text mode)

ERASE = - * Do not erase data in the DESTINATON
file and LISTING file

= + Erase data in the DESTINATION file
and LISTING file

PARAMETER = file Name of the file containing
parameters

= * Parameters follow the command and
are ended by *EOF

CORRECTION = file Name of the file containing the
correcting instructions

LISTING = - * No protocol to be recorded; only
error messages will be written into
the journal

= -STD- The correction protocol is to be
written into the standard LISTING
file

= file Name of the file to which the
correction protocol is to be written

CORRECT - 452 - TUSTEP

Features:

This program is used to correct texts without using
the Editor. The correcting instructions, which have
been recorded in a file, allow the user to replace,
erase or insert

- lines (eg. line 2 on page 3)

- words (eg. the second word in line 3 on page 4)

- characters (eg. the second character in line 3 on
page 4

or the second character in the third word in line 4 on page
5).

A protocol of the executed corrections is provided
upon request.

Note

The correcting instructions for this program are
usually created with the command #COMPARE and then
processed further.

TUSTEP - 453 - CORRECT

Correcting instructions

A correcting instruction consists of the following
components:

- Area of text to be corrected

- Type of correction to be carried out. This is
indicated by one of the correction codes "-"
("delete"), "+" ("insert"), "=" ("replace"), or "*"
("comment").

- Corrective text to be used in corrections (for
"insert" and "replace").

Corrective text should be entered immediately after
the correction code (i.e. not separated by any blank
spaces).

Correcting instructions must be sorted in ascending
order, according to the text areas that are being
corrected. Corrections which are added later must be
placed at the proper position.

Each correcting instruction should start at the
beginning of a new line. If the correction text is
too long for one input line, it may be continued in
the following line. Such continuation lines are to be
marked with a "+" at the beginning of the line.
Hyphenation should not be used in correcting
instructions which take up more than one line.

When correcting with "insert", you are expected to
enter a position (line, word or character) and not a
text area. The corrective text will be inserted after
this position. This position entry takes the same form
as that part of the area specification which precedes
the "to" dash.

CORRECT - 454 - TUSTEP

Specifying the text areas to be corrected

Areas of the text to be corrected are specified by
entering page and line numbers. More limiting
specifications are made by including word and/or
character numbers. An area entry uses the following
syntax:

p1.l1[/d1][,w1][:c1]-p2.l2[/d2][,w2][:c2]

where:

p1 and p2 = page number
l1 and l2 = line number
d1 and d2 = distinction number
w1 and w2 = word number
c1 and c2 = character number

Elements in square brackets are optional. Both parts
of an specification must limit the text area in the
same manner (i.e. by either "line" or "word" or
"line:character" or "word:character"). Otherwise, you
only have to specify those elements that are
sufficient in defining a unique text area.

- If a distinction number is not entered after a line
number, a distinction number of 0 is assumed.

- If you are correcting one or more whole lines, word
and character numbers should be omitted.

- If the corrections are limited to whole words, the
character number should be omitted.

- If the area to be corrected is defined in terms of
individual characters, each of which are counted
from either the end or beginning of a line, the
word number should be omitted. Characters may also
be counted from the beginning or end of a word,
only in this case all components should be included
in the area specification.

Short cuts for specifying a text area

The page number can be omitted if it is the same as
the most recently named page number.

The page number can also be written on a separate line
and preceded by a "=". For example:

=1256
2-3=replacement for lines 2 and 3 on page 1256
5,2+insertion after the second word in line 5 on
page 1256

You may leave out all elements, including separators
(. / , :), in the second half of the area definition
which, starting from the left, match those in the

TUSTEP - 455 - CORRECT

first half (Exception: a "/" located in front of a
distinction number must always remain). For example:

p1.l1/d1,w1:c1[-[[[p2.]l2[/d2],]w2:]c2]

Especially when using the functions "delete" and
"replace", the first half of the area specification
(ie. that part located before the "to" dash) alone is
sufficient for deleting or replacing a single line,
word or character.

Examples of equivalent expressions:

1.2-1.2 and 1.2
1.2-1.3 and 1.2-3
1.2-1.2/3 and 1.2-/3
1.2,3-1.2,3 and 1.2,3
1.2,3-1.2,4 and 1.2,3-4
1.2:3-1.2:4 and 1.2:3-4
1.2,3:4-1.2,4:6 and 1.2,3:4-4:6

When specifying "word" and "character", it is also
possible to count words or characters starting from
the right. This is done by choosing an exponent of ten
(10, 100, 1000, 10000, 100000) that is greater than
the sum of words (or letters) in a line (or greater
than the number of letters in a word) plus the
position of the word or character as counted from the
right. A word or character is thus specified by
counting how far it is from the right margin and then
subtracting this number from the chosen exponent.
Example: 100-2=98 for the next-to-last word or
character of a line containing less than 98 words or
characters; writing 998, 9998 or 99998 has the same
effect.

Notes:

When counting words, each character string surrounded
by the beginning and/or the end of a line and/or by
one or more blank spaces is a considered one word.
Thus, punctuation marks and special characters are
either part of a word or, when separated from it by
blank spaces, a separate word. A hard space ("_") does
not count as a blank.

When counting characters in a line, blanks at the
beginning of the line must also be counted.

If one or more words or characters are to be inserted
at the beginning of a line, the beginning of the line
can be addressed by word no. 0 or character no. 0.

If the text area is defined using word numbers
(without an additional character number), blank spaces

CORRECT - 456 - TUSTEP

after a word are considered part of the word. If this
type of definition is used when correcting with the
functions "insert" and "replace", a blank space is
appended to the end of the corrective text. If the the
corrective text is to be placed at the end of a line
(using the operation "insert after last word") then a
blank is inserted before the corrective text at the
end of the line.

If for "replace" and "insert" instructions the
correction area is defined using character numbers,
and no other characters follows the correction
characters "=" or "+", then a blank will be inserted
there when the correction is executed.

Blanks located at the end of a line are removed during
text input, input of correcting instructions and text
output.

Correction protocol

The LISTING file shows all changes that have been
carried out by the correction process. Each line that
was modified is listed in its original and corrected
forms. The changes that have been carried out are
marked between these two lines in the following
manner:

- a deletion is marked with a "-" under the character
deleted in the original line (ie. upper line in the
LISTING file).

- an insertion is marked with a "+" placed over the
inserted character in the corrected line (ie. lower
line in the LISTING file).

- a replacement is marked as a combination of
deletion and insertion.

When "-" and "+" coincide (for example, when a
replacement is to be marked), an "*" will appear at
this position.

TUSTEP - 457 - CORRECT

Parameters

Values in [] refer to the type of
parameter employed. The various types of
parameters are described in the
"Parameters" chapter of "TUSTEP Basics".

Values in < > refer to default settings.

Selecting data

If the entire file is to be processed, none of the
following parameters are necessary.

BER Definition of a single area
("page.line-page.line") or a starting point
("page.line"). This parameter is only used
when not processing the entire input file.
[XI]

Parameters for LISTING file settings

DR Specifications for printer output control [I]

Four numerical values can be specified:

1st number: Number of columns <1>

Number of columns (printed side by side)
on each page

2nd number: Left margin <0>

Number of blanks to the left of the first
column

3rd number: Column width <132>

Number of characters per column

4th number: Space between columns <0>

Number of blank spaces between columns

DRZ Additional specification for printer output
control [I]

Three numerical values can be specified:

CORRECT - 458 - TUSTEP

1st number: Header text <3>

Number of lines for the header (including
blank lines)

2nd number: Column height <60>

Number of lines per column (excluding
lines for the header and footer)

3rd number: Footer text <0>

Number of lines for the footer (including
blank lines)

KT Text parts to be printed at the top of every page
as a header [II]

<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx"
or "xx.xx.xx" at the appropriate position.
Positions for the current time may be
indicated by "xx.xx" and for the page number
by "xxxxxx" (2 to 6 "x"s, but at least as
many positions as necessary for the page
number). If "- xxxxxx -" is entered for the
page number, it will appeared centered on
the page between two minus signs, with each
minus sign separated from the page number by
a space having the width of up to one whole
blank. However, the date, time and page
number can be inserted only one time each.

If a text part begins with a "*:", the rest of
the text part serves as a header for every
text column. If a numeral n is entered in
place of the asterisk, the rest of the text
part is used as a header for the nth column.
If the numeral given equals 0, the rest of
the text part is used for the entire line.
If a text part does not begin as just
described, "0:" is assumed (standard value).

The following rules determine which line of the
header is taken up by the specified text
parts: A text part which is designated for
an entire line will be printed at the start
of a new line (starting with the first
line). A text part which is to appear above
a particular column should be entered in the
same line as the preceding text part, unless
this line contains text meant for an entire
line, for the same column, or for a column
further to the right. In this case, the text
part will be printed in the next line.

Each of the specified text parts can be arranged
in three parts using the formating

TUSTEP - 459 - CORRECT

instructions "@z" and "@/":
left-aligned @z centered @/ right-aligned

The individual parts will be inserted
left-aligned, centered and right-aligned. An
individual part may be omitted; in this case
the formatting instructions in front of the
second and third parts may also be omitted.

FT Text parts (analogous to that described in
parameter KT) to be printed as a footer at
the bottom of every page. [II]

The date, time or page number may not be entered
in the footer if already specified to appear
in the header.

DRT Printing device for which the data are to be
prepared. [XI]

This parameter is obligatory if a listing file is
to be created.

The types of available printers depends on the
actual computer being used. To obtain a list
of these, use the command.

 #LIST,PRINTERS

Output record length and numbering

NR Specifications for numbering output records [I]

Three numerical values can be specified:

1st number: Page number with which output is to
start (999999 for selecting the next
available page).
<MODE=-STD-: 999999; MODE=+: 1>

2nd number: Maximum number of records per page.
<MODE=-STD-: 1000000; MODE=+: 60>

3rd number: Increment for numbering when a new
record number must be allocated.
<MODE=-STD-: 10; MODE=+: 1000>

SL Length of output records [I]

Two numerical values can be specified:

1st number: Maximum length of lines to be
subdivided because they are longer
than the second number specified in
this parameter. <99999>

CORRECT - 460 - TUSTEP

2nd number: Maximum length of lines which are not
to be subdivided. <100 (or the value
specified in the first number if this
is greater than 100)>

Before output, a line that contains more
characters than specified by this parameter às
second number will be subdivided into two or more
output records. The line will be subdivided into
records having a maximum number of characters as
specified by this parameter às first number. The
line is divided at blanks which are not preceded
by a "-" (exception: a blank preceded by " -",
since this "-" represents a dash and can
therefore not be confused with a hyphen). If such
a division point cannot be found within the
number of characters specified by the first
number, the next possible division point will be
selected.

Alphabetical list of parameters

BER Selecting an area from the SOURCE file . . 457
DR Printer output control 457
DRT Type of printer 459
DRZ Printer output control - additional
specifications 457
FT Footer 459
KT Header 458
NR Numbering output records 459
SL Length of output records 459

* * * * *

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 F O R M A T

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

FORMAT - 462 - TUSTEP

Survey:

Command . 463

 Specifications 463
 Features 464
 Note . 464

Parameters 465

 Selecting data 465
 Parameters for LISTING file settings 466
 Specifications for numbering 468
 Replacing character strings 469
 Specifications for margin justification . . . 469
 Inverting text parts 470

 Alphabetical list of parameters 471

Character set 471

Instructions 472

List of formatting terms 478

Notes . 479

 Hyphenation 479
 Paragraphs 479
 Continuation lines 479
 Footnotes 480
 Positioning 480
 Hard spaces 480
 Formats 480

Limitations 481

 Line markings 481
 Footnotes 481
 1 1/2-line feed 481

TUSTEP - 463 - FORMAT

Command:

#FORMAT

Specifications:
SOURCE = file Name of the file containing the data

(with formatting instructions) to be
formatted

= -STD- The standard TEXT file contains the data
(with formatting instructions) to be
formatted

DESTINATION= - * Output only to the LISTING file

= file Name of the file to which the data (with
formatting instructions) are to be
written observing the new page-line
division.

= -STD- The formatted data (with formatting
instructions) are to be written into the
standard TEXT file observing the new
page-line division.

MODE = Type of printer for which the data are to
be prepared. The types of printers
available depends on the actual computer
being used. To obtain a list of these,
use the command #LIST, PRINTERS

The printer can also be specified with
parameters.

ERASE = - * If the DESTINATION file or the LISTING
file already contains data, they are to
be retained.

= + If the DESTINATION file or the LISTING
file already contains data, they are to
be erased beforehand.

PARAMETERS = - * No parameters

= file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

PREFIX = - * No user-defined default settings

= file Name of the file containing formating
instructions for user-defined default
settings.

= * The formatting instructions for
user-defined default settings follow the
command (and any parameters) and are
ended by *EOF.

FORMAT - 464 - TUSTEP

LISTING = -STD- * The formatted data are to be written to
the standard LISTING file.

= file Name of the file to which the formatted
data are to be written.

= - No listing output of formatted data

Features:

With this command texts can be prepared for printing. The text
is automatically made up into lines and pages (including
hyphenation, line justification and footnotes). The layout can
be controlled by instructions which are included in the text.

Notes:

Data in the SOURCE file always remain unaltered. The formatted
results of the program (i.e. the data prepared for printing) are
written to the LISTING file. These can be then printed (sent to
a printer) with the command #PRINT.

Data are written to the DESTINATION file as they are found in
the SOURCE file (with the exception of character strings which
have been replaced according to the appropriate parameters). The
line division and the page-line numbers, however, are adjusted
to the formatted result.

The DESTINATION file is therefore ideal for making further
corrections. It has the advantage over the SOURCE file in that
its page-line numbering corresponds to that of the printed
results, making it much easier to find the exact position in the
Editor where the text must be corrected.

If an index is to be compiled from the formatted text, the
DESTINATION file must be used so that the references correctly
reflect the updated page positions of the formatted text.

TUSTEP - 465 - FORMAT

Parameters

Values in [] refer to the type of parameter employed; the
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to default settings.

In addition to the following parameters, other parameters can be
used to define character groups and character strings. [V]

Selecting data

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of a single area ("page.line-page.line") or
a starting point ("page.line"). This parameter is only
used when not processing the entire input file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the file are in ascending order.

MAX For test runs, this specifies the maximum number of
records that are to be read/outputted, or the maximum
number of pages that are to be prepared for printing.
[I]

Three numerical values can be specified:

1st number: the maximum number of records that are to
be read <999999>

2nd number: the maximum number of records for output
<999999>

3rd number: the maximum number of pages for output
<999999>

FORMAT - 466 - TUSTEP

Parameters for LISTING file settings

DR Printer output control [I]

Four numerical values can be specified:

1st number: Columns <1>

Number of columns appearing side-by-side on
every page <1>

2nd number: Left margin <10>

Number of blanks to the left of the first
column

3rd number: Column width <64>

Number of characters per column

4th number: Space between columns <0>

Number of blank spaces between columns

DRZ Additional specification for printer output control
[I]

Seven numerical values can be specified:

1st number: Header <3>

Number of lines for the header (including blank
lines)

2nd number: Height of column <60>

Number of lines per column (excluding lines for
the header and footer)

3rd number: Footer <0>

Number of lines for the footer (including blank
lines)

4th number: Columns <1>

Number of columns per page

5th number: Repetition of footer text

Number of lines of the page às footer text
(counting from the first line down) which are
to be repeated after every column (except for
the last column).

TUSTEP - 467 - FORMAT

6th number: blank lines <0>

Number of blank lines between individual
columns

7th number: Repetition of header text <0>

Number of lines of the page às header text
(counting from the bottom line to the top)
which are to be repeated before every column
(except for the first column).

KT Text parts to be printed at the top of every page as a
header [II]
<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx" or
"xx.xx.xx" at the appropriate position. Positions for
the current time may be indicated by "xx.xx" and for
the page number by "xxxxxx" (2 to 6 "x"s, but at least
as many positions as necessary for the page number).
If "- xxxxxx -" is entered for the page number, it
will appeared centered on the page between two minus
signs, with each minus sign separated from the page
number by a space having the width of up to one whole
blank. However, the date, time and page number can be
inserted only one time each.

If a character string begins with a "*:", the rest of
the character string serves as a header for every text
column. If a numeral n is entered in place of the
asterisk, the rest of the character string is used as
a header for the nth column. If the numeral given
equals 0, the rest of the character string is used for
the entire line. If a character string does not begin
as just described, "0:" is assumed (standard value).

The following rules determine which line of the header
is used by the character string: A character string
which is designated for an entire line will be printed
at the start of a new line (starting with the first
line). A character string which is designated for a
particular column will be printed in the same line as
the preceding character string, unless this line
contains text meant for an entire line, for the same
column, or for a column further to the right. In this
case, the character string will be printed in the next
line.

Each of the specified character strings can be
arranged in three parts by using the formatting
instructions "@z" and "@/":

left-aligned @z centered @/ right-aligned
The individual parts will be inserted left-aligned,
centered and right-aligned. An individual part may be
omitted; in this case the formatting instructions in
front of the second and third parts may also be
omitted.

FORMAT - 468 - TUSTEP

KTZ Specifies whether the header text is to be printed on
the first page. [I] <0>

0 = Suppress header text
1 = Print header text

FT Text parts (analogous to the description for parameter
KT) to be printed as a footer at the bottom of every
page. [II]

Date, time and page number may not be included in the
footer if already specified to appear in the header.

DRT Printing device for which the data are to be prepared.
[XI]

This parameter is obligatory if no printer has been
given in the specification MODE (and may only be
specified here if this is the case).

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST,PRINTERS.

Parameters for numbering

NR Initial page number for output [I] <1>

ROM Specifies whether Arabic numerals or Roman numbers are
to be used for the page number in the header or footer
text. [I] <0>

0 = Arabic numerals
1 = Roman numbers in lowercase letters
2 = Roman numbers in uppercase letters

FNN Number to be used as the first footnote number. [I]
<1>

TUSTEP - 469 - FORMAT

Replacing character strings

X Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
by the pair às second character string upon input of
the SOURCE file. [X]

Replacement is carried out in the input record. Before
the character string is replaced, a blank is added to
both the beginning and end of the record and is
removed as soon as replacement has been carried out.
This can be used, for example, to convert a sequence
of abbreviated instructions into its full form.

If hyphenated words are to be rejoined, the program
checks whether the record ends with a hyphen after
replacement has been carried out.

XPR Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
by the pair às second character string upon output to
the LISTING file. [X]

Replacement is carried out word by word (blanks can
therefore not be replaced).

XXX Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
by the pair às second character string upon output to
the DESTINATION file. [X]

Replacement is carried out in the output record for
the DESTINATION file. A sequence of instructions, for
example, can thus be converted back to its original
shortened form.

Margin justification

REZ Specifies whether the margin of a single line (i.e.
the first line of a paragraph containing only two
lines) is to be justified. [I] <1>

0 = Justify margin
1 = Do not justify margin

FORMAT - 470 - TUSTEP

Inverting text parts

Normally, none of the following parameters need to be specified,
since the default settings are sufficient for standard use.

Arabic, Hebrew and Syrian texts must be printed from right to
left. However, the #PRINT command can only print from left to
right. For this reason, such text parts have to be inverted. At
the same time, care must be taken that numbers, control
characters and codes which consist of more than one character
are not inverted along with the text.

AUM Character strings marking the beginning of the text
parts to be inverted. [IX]

Default settings:

>1Z AHY
AUM à#>1+à

EUM Character strings marking the end of the text parts to
be inverted. [IX]

Default settings:

>1Z CGKPR
>2Z AHY?CGKPR
EUM à#>1+à#>2- à

NUM Character strings which are not to be inverted should
they occur in the text parts to be inverted. [IX]

Default settings:

>1Z =+-
>2Z à,;!."
>3Z +-:
>4Z ()[]{}<<>>
>5Z !" à()*,-./:;<<>>?[\]{}
>5S à%>5à%>5>5à
>6S à</ à#.</ à_à
NUM à<>>/ à#>1>/>/>/ à#>2<%à
NUM à#(<></) à#>%>3à>4à<>>5>6

XUM Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
by the pair às second character string within the
character strings which are not to be inverted (as
specified with the parameter NUM). [X]

Default settings:
>1Z 0123456789/SF
>5Z !" à()*,-./:;<<>>?[\]{}
>5S à%>5à%>5>5à
XUM à#>1+à#>=02- à#>1- à#>=02+à

TUSTEP - 471 - FORMAT

XUM à#.: à#.; à#.; à#.: à
XUM à(à) à) à(à[à] à] à[à{ à} à} à{ à<<à>>à>>à<<à
XUM àà>5à#"<< à#">> à#(<></) àà

Alphabetical list of parameters
AUM Beginning marker for inverting text 470
BER Selecting an area of text 465
DR Printer output control 466
DRT Type of printer 468
DRZ Printer output control - additional specifications 466
EUM End marker for inverting text 470
FNN First footnote number 468
FT Footer text . 468
KT Header text . 467
KTZ Header text - additional specifications 468
MAX Maximum output for trial runs 465
NR First page number 468
NUM Character strings not to be inverted 470
REZ Justification of single lines 469
ROM Roman numbers as page numbers 468
X Replacement upon input 469
XPR Replacement for LISTING file 469
XUM Replacement upon inversion 470
XXX Replacement upon output 469

Character set

A complete list of character sets (with input codes) can be
found in "TUSTEP Basics", as well as the various possibilities
of displaying characters in superscript and subscript, and the
available display types (underlining, letter-spacing, bold,
etc.).

If the characters "#", "$", "%", "&", "@", "\", "_" are to be
printed, they must be written as "^#", "^$", "^%", "^&", "^@",
"^\", "^_". Information concerning the coding of other special
characters is described in "TUSTEP Basics".

FORMAT - 472 - TUSTEP

Instructions:

An instruction also serves as a separator character between two
words. Therefore, it does not matter whether an instruction is
surrounded by blanks or not. If, however, one of the
instructions 2 to 40 is immediately followed by a word starting
with one or more digits, at least one blank must be located
between the instruction and the word; otherwise the digit(s)
would be interpreted as being part of the instruction.

Letters in the instructions may be written in either lowercase
or uppercase. The specification n stands for an integer with no
sign. It is ended by an arbitrary character (except a digit)
placed to its right. The specification "n = :" in the
description refers to the case when n is missing, i.e. when no
number has been given.

The specification or definition of instructions marked with a
"+" or "-" remain in force until they are canceled or altered by
a corresponding instruction. The specification or definition of
instructions which are marked by a "+" are in addition stored
for the "format" currently valid and will be reset when another
format is selected. All instructions which are unmarked affect
only their immediate surroundings.

 0 Blank = Space between words. More than one blank will
be treated as 1 blank unless specified otherwise in
instruction 55 (@-).

 1 Blank line: n successive blank lines in the input data
correspond to instruction 2 ($n, n = number of blank
lines).

$n 2 Start of paragraph (cp. "Paragraphs" on page 479): new
line preceded by n blank lines. These blank lines will
be suppressed at the start of a new page or column. A
succession of n blank lines in the input data
correspond to the instruction $n. If more than one
instruction for blank lines is given (with no
intervening text), only the instruction requesting the
largest number of blank lines will be carried out.

n = 0: 1/2 blank line
n = : no blank line

Line spacing for blank lines is the same as that used
for lines to be printed: the default setting is 1/6
inch (meaning 6 lines per inch), unless specified
otherwise in instruction 5 (&Vn).

$$n 3 (not yet defined)

$$$n 4 Start of paragraph (cp. "Paragraphs" on page 479): new
line; new column (i.e. new page for single-column
layout) if less than n lines are available on the
current page. Any blank lines which are to be placed
before the next line to be printed are not counted. If

TUSTEP - 473 - FORMAT

this instruction is given more than once in succession
(with no intervening text), only the instruction with
the largest value of n will be carried out. However,
the instruction for page break ($$$0) has precedence.

n = 1: as in $$$ if the following text up to the
next line break instruction fits into 1
line; otherwise as $$$2.

n = 0: New page
n = : New line only, no start of paragraph

The amount of space taken up by the n lines which must
still be available on the page depends on the line
spacing setting. The default setting is 1/6 inch per
line (meaning 6 lines per inch), unless specified
otherwise with instruction 5 (&Vn).

&Vn 5 + Set line spacing to n (max. 4) lines (default setting
n=1).

n = 0: 1 1/2 line spacing (4 lines per inch)
n = 1: single spacing (6 lines per inch)
n = 2: double spacing (3 lines per inch)
n = 3: triple spacing (2 lines per inch)
n = 4: quadruple spacing (1 1/2 lines per inch)
n = : (not yet defined)

&$n 6 + Indent paragraph continuation lines n characters from
the left margin at the start of a paragraph coded by
instruction 2 (default setting n=0).

n = : Indent as at the start of a paragraph

&Fn 7 + Indent the following n characters from the left margin
(Instructions 8 and 9 have precedence; default
setting: n=0).

n = : Indent as usual for continuation lines

&:n 8 Indent the rest of the line and all following lines
(until the next line break instruction) n characters
from the left margin. (Has precedence over instruction
7).

n = : (not yet defined)

&;n 9 Indent all following lines (until the next line break
instruction) n characters from the left margin (has
precedence over instruction 7).

n = : Indent following lines to the current
position (relative to the left margin)

&Ln 10 + Define a left margin of n characters (default setting:
n=0).

n = : Define current position as left margin

&Rn 11 + Define a right margin of n characters (default setting
n=0).

FORMAT - 474 - TUSTEP

n = : Define current position as right margin

&An 12 as instruction 10, in addition: move to left margin
n = : Move only to left margin

&En 13 as instruction 11, in addition: move to right margin.
n = : Move only to right margin

&=n 14 Move to position n

n = 0: Mark current position
n = : Move to the position marked by instruction

&=0

&+n 15 Move n positions to the right
n = 0: Mark position (relative to left margin)
n = : Move to position marked by instruction &+0

&-n 16 Move n positions to the left
n = 0: Mark position (relative to right margin)
n = : Move to position marked by instruction &-0

&Tn 17 Move to tabulator n (max. 20). If this has not been
defined (with instruction 18), the current position
will not change.

n = 0: Move to the next physical tabulator stop
(i.e. the tabulator stop located at the
current position or farther to the right and
whose number follows that of the last
tabulator addressed in the same line, or
which has the smallest number in case a
tabulator is addressed for the first time in
the line). If such a tabulator does not
exist, move to the right margin. If all tab
stops are in ascending order, this
instruction has a function similar to that
of the tabulator key on a typewriter.

n = : Move to the next logical tabulator stop
(i.e. the tab stop whose number is 1 higher
than that of the last tab stop addressed in
the same line, or the tab with the number 1
in case a tab stop is being addressed for
the first time in the line). If this has not
yet been defined (with instruction 18), the
current position will not change.

&Mn 18 + Set tabulator n (max. 20) at the current position

n = 0: Cancel all tabulators (default setting)
n = : Set next tabulator (i.e. the tabulator with

the number 1, if a tabulator is being
addressed for the first time in the line) at
the current position

&Zn 19 + Center field in front of tabulator n (max. 20). (Takes
effect when positioning to tabulator n.)

n = 0: No field to be centered (default setting)
n = : Center all fields

TUSTEP - 475 - FORMAT

&/n 20 + Field in front of tabulator n (max. 20) to be printed
right-aligned (Takes effect when positioning to
tabulator n.)

n = 0: No fields to be printed right-aligned
(inital setting)

n = : All fields to be printed right-aligned

&.n 21 + Print field in front of tabulator n (max. 20)
right-aligned, with dot leader (Takes effect when
positioning to tabulator n.)

n = 0: The above is not valid for any field
(default setting)

n = : The above is valid for all fields

&Dn 31 Inserting the current date.
n = : (not yet defined)
n = 1: Date written as xx.xx.xx (e.g. 23.01.90)
n = 2: Date written as xx. xxx. xxxx

(e.g. 23. Jan. 1990)
n = 3: Date written as xx. xxxxxxxx xxxx

(e.g. 23. Januar 1990)

&"n 35 Reference to the following footnote is not to be
inserted at the end of the preceding word but n
characters (print positions, not characters of input
coding) farther to the left.

n = 0: Footnote reference to be inserted
immediately after the last printed character
of the preceding word (e.g. between "d" and
"#1-" in "#1+Word#1-").

n = : (not yet defined)

&,n 36 Set word spacing before the next word to n blanks.

n = : (not yet defined)

&Xn 37 + If a total of more than n blanks must be added to a
line to justify it, cancel justification for this line
(default setting 999).

n = 0: (not yet defined)
n = : (not yet defined)

&Yn 38 + If more than n blanks must be inserted at any single
position in the line to justify it, cancel
justification for this line (default setting: 999).

n = 0: (not yet defined)
n = : (not yet defined)

&Sn 39 + Hyphenate only (besides positions marked by a "\")
when more than n characters are available in the line
for the word to be hyphenated (default setting: n=2).
This instruction covers instruction 51 (@S+).

n = 1: Hyphenate only (in addition to positions
marked by a "\") when justification of a

FORMAT - 476 - TUSTEP

line would require more than one blank to be
inserted at any single position.

n = 0: Hyphenate only at positions marked by a "\".
n = : (not yet defined)

&Wn 40 - Switch to the format having the number n (max. 9).

n = 0: Restore default settings
n = : Use settings from previously-used format.

@W+ 41 + Switch to the format having the next higher number

@W- 42 + Switch to previously-used format

@Z 43 Center following text (up to the next instruction for
positioning or line break, or up to one of the
instructions 43 to 46).

@/ 44 Align following text to the right (up to the next
instruction for positioning or line break, or up to
one of the instructions 43 to 46).

@. 45 as instruction 44, but insert dot leader in
intervening space

@W 46 Repeat following text (up to the next instruction for
positioning or line break, or to one of the
instructions 43 to 46) as often as necessary to fill
up intervening space (up to specified position or to
the right margin). Caution: If the text to be repeated
is terminated by one of the instructions 43 to 46,
text will be repeated up to the right margin and a new
line will be started.

@\+ 47 + If a word contains a space (blank; this can be either
a blank coded as "_" or one that has been inserted as
a result of replacement using parameter XPR and is
thus not regarded as a separator between words), a new
line may be started at this position if the word does
not fit into the line.

@\- 48 + If a word contains a space (blank; this can either be
one coded as "_" or one that has been inserted as a
result of replacement using parameter XPR and is thus
not regarded as a separator between words), a new line
may not be started at this position. (default setting)

@\ 49 Do not hyphenate following word (except at positions
marked with a "\")

@S- 50 + Hyphenation off (i.e. hyphenate only at positions
marked with a "\")

@S+ 51 + Hyphenation on (default setting)

@R- 52 + Justification off

@R+ 53 + Justification on. However, solitary lines (i.e. a
paragraph consisting of one line only) will not be
justified (default setting)

TUSTEP - 477 - FORMAT

@R 54 - Justify current line (However, instructions 43 to 46
have precedence over this instruction).

@- 55 + Keep extra blanks; line breaks in the input data will
have the same effect as the instruction $$$. This
means that the program attempts to preserve the text
format of the input file. However, any instructions
contained in the text will be carried out.

@+ 56 Cancels instruction 55 (default setting)

@D 57 Do not print following word. This instruction cancels
instruction 58, if present.

@D- 58 - Print off (following text will not be printed, but the
corresponding space will be left free)

@D+ 59 - Print on (default setting)

@I 60 Ignore next word or instruction. This allows the user
to insert, for example, markers (which will not be
printed) for index entries.

@I+ 61 - Ignore following words. For example, this allows the
user to skip over index entries included in the text.

@I- 62 - Cancel instruction 61 (default setting)

@$ 63 New line, in case the following (absolute) positioning
instruction cannot be executed as desired.

@$+ 64 - as instruction 63, but is valid for all subsequent
positioning instructions. In this case, instruction 63
cancels instruction 64 for the next positioning to be
carried out.

@$- 65 - Cancels instruction 64 (default setting)

@M 66 The line in which the following word is located is to
be marked; this instruction cancels instruction 67, if
it has been given.

@M+ 67 - Turns line marking on. The marking (vertical line in
the right margin) can be used, for example, to mark
additions to the text made in a new version.

@M- 68 - Turns line marking off (default setting)

@F 69 Footnote numbering to be reset to 1 (starting with the
next instruction 70).

@F+ 70 Beginning of footnote

@F- 71 End of footnote

FORMAT - 478 - TUSTEP

List of formatting terms:

The numbers refer to the related instructions

Centering 19,43 Line marking 66-68
Continuation lines . . . 7-9 Line spacing 2,3,5
Footnotes 35,69-71 Margins 10-13
Free space 57-59 Marking position 14-16
Hyphenation . . . 39,47-51 Page break 3,4
Indentation 8,10,12,14,15,17 Paragraph, start of . . 2-4,6
- at start of paragraph . 6 Positioning 8,12-17
- of continuation lines 7-9 Right alignment . . . 20,44,45
Justification . 37,38,52-56 Tabulators 17-20
Line break 2-4,63-65

TUSTEP - 479 - FORMAT

Notes:

Hyphenation

Hyphenated words present in the input data will be rejoined.
Here a hyphen is considered to be a "-" which is the last
character in a line (= input record) if the next-to-last
character is also a "-", or if the next-to-last character is a
letter and the third-to-last character is not a control
character ($, &, @, \, _, #, %).

If a "-" located at the end of a line is not to be interpreted
as a hyphen, a "\" should be added directly after the "-". The
character "\" will not appear in the printout.

When words are rejoined, a hyphenated "ck" which has been
written as "k-" und "k" (according to German hyphenation rules)
will not be restored as "ck".

The program uses German hyphenation rules when hyphenating. In
addition, a "\" can be used within a word to mark the position
where hyphenation should preferably be carried out; "\\" can be
used to mark a position which should not be hyphenated under any
circumstances. If "\" is written at the beginning of a word, it
can only be hyphenated at its "\" positions.

Any hyphenation carried out will not be reflected when the file
is written to the DESTINATION file. A hyphenated word in the
LISTING file will appear in its unhyphenated form in the
DESTINATION file.

Paragraphs

The beginning of a paragraph also includes the end of the
preceding paragraph. The program makes sure that neither the
first line of a paragraph appears as the last line on a page (or
column) nor that the last line of a paragraph appears as the
first line on a page (or column). This may result in a page (or
column) having one line less than its full length when printed,
with one or two lines being carried over to the next page (or
column) in order to meet these requirements.

If, however, the last line of a paragraph contains a footnote
reference number, this line may appear at the top of a new page.

Continuation lines

Continuation lines are lines that are started by automatic line
breaks, as opposed to those started by a line-break instruction
(instruction 2-4).

FORMAT - 480 - TUSTEP

Footnotes

Footnotes must be surrounded by the instructions @F+ and @F-
(instructions 70 and 71). During formatting, they will be
automatically numbered and placed at the bottom of the
respective page. The footnote reference number (footnote number)
will be printed directly after the preceding word. If the
footnote number is not to be inserted at the end of the word but
further to the left (e.g. before a comma at the end of a word),
instruction 35 (e.g. &"1) can be given before instruction 70 in
order to specify how many characters (print positions, not input
character positions) farther to the left the footnote number is
to be inserted.

Positioning

If a positioning instruction is to be executed (instructions 8
and 12-17) but the current position is to the right of the
desired position, a blank will be inserted instead (unless
instructions 63 or 64 have been given, specifying that in this
case a new line is to be started and positioning is to take
place in this new line). If, however, blanks are already present
immediately to the left of the current position, the positioning
instruction will be attempted once more, starting at the last
non-blank position.

Hard spaces

If a space (blank) is not to be enlarged during justification, a
"_" (underline dash) should be used instead of a blank. Such a
hard space will not be considered as a separator character
between two words.

Formats

A "format" consists of all format settings (e.g. left and right
margins, tabulators) which may be altered by instructions marked
with a "+". There are 9 formats, numbered from 1 to 9.

When the program is started, all formats will contain the
default settings, and format 1 will be selected. Default
settings are described along with the instructions marked with a
"+". When another format is selected (using one of the
instructions 40-42), the settings last defined for the
respective format will take effect.

Formats can be helpful when working with tables whose layouts
are often repeated. The necessary instructions for each table
can be stored in a separate format; tabulators thus must be set
only once for each table format.

TUSTEP - 481 - FORMAT

Limitations:

Line markings

Lines may be marked (instructions 66-67) for single-column
printing only (1st numerical value in the parameter DR = 1).

Footnotes

Footnotes (instructions 69-71) are possible for single-column
printing only (1st numerical value of the parameter DR = 1).

1 1/2-line feed

A line feed of 1 1/2 is possible for single-column printing only
(1st numerical value of the parameter DR = 1). In addition, such
a line feed is possible only with dot-matrix and laser printers,
not with line printers.

This limitation affects instructions 2 and 5. In case a
1 1/2-line feed is not possible, the instruction $0 will be
treated as $, and the instruction &v0 as &v1.

* * * * *

 - 482 -

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System OF Text Processing Programs

 Program

 G E N E R A T E F O R M S

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

GFORMS - 484 - TUSTEP

Survey:

Command . 485

 Specifications 485
 Features 485

Parameters 486

 Selecting data 486
 Parameters for LISTING file settings 487
 Parameters for numbering 489
 Organizing records into a text unit 489
 Replacing character strings 490
 Supplementing a text part 491
 Arranging the text unit into form fields . . 491

 Alphabetical list of parameters 497

TUSTEP - 485 - GFORMS

Command:

#GFORMS

Specifications:
SOURCE = file Name of the file containing the data from

which forms are to be generated

= -STD- The standard TEXT file contains the data
from which forms are to be generated

MODE = - * The sequence of data in the LISTING file
is to be the same as in the input file

= -STD- The input data is to be sorted in such a
way as to yield sequential stacks of
forms after cutting.

ERASE = - * If the LISTING file already contains
data, they are to be retained.

= + If the LISTING file already contains
data, they are to be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF

FORM = - * No form to be used as a mask

= file Name of the file containing a form to be
used as a mask

LISTING = -STD- * The generated forms are to be written
into the standard LISTING file

= file Name of the file into which the generated
forms are to be written

Features:

This command can be used to prepare data for printing in a given
format (e.g. address labels, standardized letters, catalog
cards, office forms). It is possible to specify:

- the size of the form

- standard text for each form (which can also depend on the
occurrence of specific text parts in the respective form)

- line and character positions for each text part

- text parts which are to be repeated on continuation forms if
there is not enough space for the text on one form

GFORMS - 486 - TUSTEP

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > are default settings.

In certain parameters, beginning and end markers (as well as
markers which serve as left and right parentheses) can be used
to select text parts for further processing. The manner in which
these parameters function is also described at the end of the
"Parameters" chapter in "TUSTEP Basics".

In addition to the following parameters, other parameters can be
used to define character groups and character strings. [V]

Parameters marked with a "+" must contain a 2 in column 7 if
they are meant for a continuation form.

Selecting data

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of a single area ("page.line-page.line") or
a starting point ("page.line"). This parameter is only
used when not processing the entire input file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the file are in ascending order.

MAX For test runs, this specifies from how many text units
forms are to be generated, or the maximum number of
forms (including continuation forms) or pages that are
to be generated. [I]

Three numerical values can be specified here:

1st number: the maximum number of text units to be
generated <999999>

2nd number: the maximum number of forms to be
generated <999999>

3rd number: the maximum number of pages to be
generated <999999>

TUSTEP - 487 - GFORMS

Parameters for LISTING file settings

DR Specifications for printer output control [I]

Seven numerical values can be specified:

1st number: Columns <1>

Number of columns (forms) to be printed side by
side on each page)

2nd number: Margin <10>

Number of blanks to the left of the first
column

3rd number: Width <64>

Number of characters per column (form)

4th number: Number of blanks between columns (forms)
<0>

5th number: Indent for continuation lines <0>

Number of blanks at the start of continuation
lines before a line break forced by one of the
character strings specified in parameter ZW

6th number: Indent after line break <0>

Number of blanks at the start of a line after a
line break forced by one of the characters
specified in parameter ZW.

7th number: Blanks at the start of continuation lines
<0>

Blanks at the beginning of a continuation line
after a line break has already been forced with
one of the characters specified in parameter
ZW.

DRZ Additional specification for printer output control
[I]

Seven numerical values can be specified:

1st number: Header <3>

Number of lines for the header (including blank
lines)

2nd number: Column height <60>

Number of lines per column (form) (excluding
lines for the header and footer)

GFORMS - 488 - TUSTEP

3rd number: Footer <0>

Number of lines for the footer (including blank lines)

4th number: Columns <1>

Number of forms per column

5th number: Repetition of footer text <0>

Number of lines of the page às footer text
(counting from the first line down) which are
to be repeated after every form column (except
for the last column) <0>

6th number: Space between forms <0>

Number of blank lines between each row of forms

7th number: Repetition of header text <0>

Number of lines of the page às header text
(counting from the botom line to the top) which
are to be repeated before every form column
(except for the first column).

KT Text parts to be printed at the top of every page as a
header [II]
<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx" or
"xx.xx.xx" at the appropriate position. Positions for
the current time may be indicated by "xx.xx" and for
the page number by "xxxxxx" (2 to 6 "x"s, but at least
as many positions as necessary for the page number).
If "- xxxxxx -" is entered for the page number, it
will appeared centered on the page between two minus
signs, with each minus sign separated from the page
number by a space having the width of up to one whole
blank.). However, the date, time and page number can
be inserted only one time each.

If a character string begins with a "*:", the rest of
the character string serves as a header for every text
column. If a numeral n is entered in place of the
asterisk, the rest of the character string is used as
a header for the nth column. If the numeral given
equals 0, the rest of the character string is used for
the entire line. If a character string does not begin
as just described, "0:" is assumed (standard value).

The following rules determine which line of the header
is used by the character string: A character string
which is designated for an entire line will be
printedat the start of a new line (starting with the
first line). A character string which is designated
for a particular column will be printed in the same
line as the preceding character string, unless this
line contains text meant for an entire line, for the

TUSTEP - 489 - GFORMS

same column, or for a column further to the right. In
this case, the character string will be printed in the
next line.

Each of the specified character strings can be
arranged in three parts by using the formating
instructions "@z" and "@/":

left-aligned @z centered @/ right-aligned
The individual parts will be inserted left-aligned,
centered and right-aligned. An individual part may be
omitted; in this case the formatting instructions in
front of the second and third parts may also be
omitted.

FT Text parts (analogous to that described in the
parameter KT) to be printed as a footer at the bottom
of every page. [II]

Date, time and page number may not be entered in the
footer if already specified to appear in the header.

SM Specifies that a page with cutting marks is to be
printed after every n pages. [I] <100>

DRT Printing device for which the data are to be prepared.
This parameter is obligatory. [XI]

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST, PRINTERS

Specifications for numbering

NR Initial page number for output [I] <1>

Organizing records into a text unit

In case each input record contains a complete text unit (i.e.
all data for a form including any necessary continuation forms),
the following parameters should not be used. Otherwise the
parameters AA and/or AE can be used to organize more than one
record into a text unit.

If one of the following four parameters is specified, any blanks
located either before or after the input record will be
eliminated before the parameter is evaluated.

When records are being organized into a text unit, a blank will
be inserted between each input record; no blank will be inserted
at positions where hyphenation protect has been specified (see
parameter STR).

GFORMS - 490 - TUSTEP

ANR Specifies whether successive records, whose record
numbers either partially or completely match, are to
be organized into a text unit. [I] <0>

One numerical value may be specified:

0 = Do not organize records into a text unit on the
basis of record numbers.

1 = Organize successive records having the same page
number into a text unit.

2 = Organize successive records having the same page
and the same line number (regardless of the
distinction number) into a text unit.

3 = Organize all successive records with the same
record number into a text unit.

If 0 is specified (default setting), records will be
organized into text units on the basis of the two
following parameters only. If one of the values 1 to 3
is specified, the resulting text units may be broken
down further on the basis of the two following
parameters.

AA Character strings placed at the beginning of a record
(after leading blanks have been eliminated) which mark
the start of a text unit. [VIII a]

AE Character strings placed at the end of a record (after
any trailing blanks have been eliminated) which mark
the end of a text unit. [VIII b

STR Hyphenation [I] <0>

0 = Input data are not hyphenated
1 = Rejoin hyphenated words during input

Here a hyphen is considered to be a "-" which (after
trailing blanks have been eliminated) is the last
character in an input record if the second-to-last
character is also a "-" or a letter and the
third-to-last character is not a control character ($,
&, @, \, _, #, %).

When hyphenation is turned off, a hyphenated "ck",
which according to German hyphenation is written as
"k-" and "k", will not be restored to its "ck" form.

TUSTEP - 491 - GFORMS

Replacing character strings

XX Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
in the text unit by the pair às second character
string. [X]

Supplementing a text part

ERG Text part which is to be supplemented before every
text unit. [II]

Here standard text for forms can be specified in
advance. The markers contained therein are used to
designate the position in the form where it is to be
printed.

Dividing the text unit into form fields

TTK Character strings marking the individual text parts.
The text parts will be stored in the form in the same
order as their corresponding markers are given in this
parameter. Should a marker occur more than once in the
data, the text parts which it marks will be organized
into a single text unit. The markers will not show up
in the form field. [IX]

TTF Specifies (parallel to TTK) whether a text part is to
be stored in its own form field, or whether it is to
be appended to another text part. [I] <0>

0 = Do not append text part to any other text part
n = Text part is to be appended to the nth text part

(i.e. the text part marked by the nth character
string in the parameter TTK). The latter can in
turn be appended to another text part.

 This process is carried out from left to right (in
the order specified in TTK). A text part can be
appended to any text part whose marker (as given
in TTK) is located further to the right. If its
marker is located to the left, the text part may
be appended only if this text part has not yet
been appended to another text part.

EGA / EGE Text parts (parallel to TTK) which are to be added to
the beginning or end of the respective text part.
Depending on the occurence of certain text parts
(markers), standard form text may be supplemented.
[II]

GFORMS - 492 - TUSTEP

Text parts inserted in this manner will not be checked
for any markers defined with parameter TKK. If such
markers happen to be present, they will be treated as
text.

AZN + Beginning line numbers (parallel to TTK) of the
individual form fields. [I] <0>

0 = Ignore text part
n = Store text part after the nth line. If the nth

line is already occupied, the text part may be
stored in the next available line, provided that
the corresponding value of the parameter EZN
allows for this.

In this parameter, the value 0 can be given for text
parts which are to be appended to another text part as
specified with parameter TTF. In this case, the 0 is
merely used as a temporary marker so that the
following numerical values can be properly assigned to
the character strings specified in parameter TTK.

EZN + Final line number (parallel to AZN) of the individual
form field. [I] <0>

0 = Text part may be stored in one line only (namely,
the one specified in the parameter AZN).

n = Text part may be stored anywhere, starting from
the line specified in the parameter AZN up to the
nth line specified here.

DPA + Beginning printing position (parallel to AZN) of the
individual form fields. [I] <1>

This defines the first position from which the text
part in the individual lines (as specified in AZN and
EZN) may be stored.

DPE + End printing position (parallel to AZN) of the
individual form fields. <3rd numerical value of
parameter DR>

This defines the last position up to which the text
part in the the individual lines (as specified with
AZN and EZN) may be stored.

ZEN + Specifications (parallel to AZN) regarding the
centering of text in individual form fields. [I] <0>

0 = left-aligned
1 = centered
2 = right-aligned
3 = justified

If vertical centering is also desired, these values
are to be added to as follows:

TUSTEP - 493 - GFORMS

00 = up
10 = in the middle
20 = down

ZW Character strings which mark the start of a new line.
None of these character strings will be printed. [IX]

ZA / ZE Text parts are to be divided into lines so that the
character strings specified in ZA and ZE are located
at the beginning and end of a line, respectively. [IX]

ZAB / ZEB If a text part has to be divided into more than one
line (in addition to the division required by the
parameters ZW, ZA, ZE), division should preferably be
carried out so that character strings specified in ZAB
and/or ZEB will be located at the beginning and end of
a line, respectively. [IX]

TTS Specifies (parallel to TTK) under what conditions
hyphenation should be attempted in case the
corresponding text part must be divided into more than
one line (in addition to division required by the
parameters ZW, ZA, ZE, ZAB, ZEB). [I] <2>

0 = Hyphenate only at points marked by a \
1 = Hyphenate at points other than those marked by a \

only when justification would require that more
than one blank space be added.

n = Hyphenate at points other than those marked by a \
only when more than n characters are available in
the line.

TAB Character strings marking a jump to the next (logical)
tabulator position. The individual character string
will not be printed. If the tabulator position has
already been passed, no jump will be carried out. [IX]

TNR Specifies (parallel to TAB) that whenever a character
string is encountered which has been specified in the
parameter TAB, a jump may be made not only to the next
tabulator position but also to at least one other
specific tab stop (namely, the tabulator position
given here). In case the number of the next (logical)
tabulator is larger than the number specified here, a
jump will be made to this tabulator. [I]

TPO Tabulator positions, i.e. starting positions of
individual tabulator stops [I]

TFZ Specifications (parallel to TPO) for positioning text
at the individual tab stops. [I] <0>

GFORMS - 494 - TUSTEP

0 = left-aligned
1 = centered
2 = right-aligned

TTV Specifies (parallel to TTK) the number of form fields
(of identical size) into which the text part is to be
divided. Here the data for the 2nd and following form
fields are treated as overlay data, i.e. they are
stored in the form field specified in the parameter
UEF. Please note that these form fields must always
have the same size. [I]

UEL + Specifies (parallel to TTK) what steps should be taken
in case a text part does not fit in the specified form
field. [I] <0>

0 = Insert "..." at the last 3 positions accompanied
by an error message

1 = Insert "..." at the last 3 positions with no error
message

2 = The rest is to be stored in the form field
specified in parameter UEF

3 = Generate continuation form
4 = Ignore the rest, with error message
5 = Ignore the rest, with no error message

UEF + Specifies (parallel to TTK) which form field the rest
of the text part is to be stored in. (cf. parameter
UEL).

n = Number of the form field

Here n may be larger than the number of character
strings (markers) specified in parameter TTK. In this
case, the corresponding specification should also be
made in parameters AZN, EZN, DPA, DPE, ZEN and UEL.

UEW Specifies (parallel to TTK) which text part is to be
repeated in the continuation form. [I] <0>

0 = Do not repeat text part
n = Repeat text part. If hyphenation characters have

been specified in the parameter UTR, the text part
will be repeated only up to the point where the
nth hyphenation character is located. Any
selections made on the basis of the parameters
AUL, EUL, (UL and)UL will be carried out
beforehand.

AUL / EUL Character strings marking the beginning / end of the
part of a text part to be repeated in the continuation
form. [IX]

TUSTEP - 495 - GFORMS

(UL /)UL Parenthesis for selecting a part of the corresponding
text part (in case AUL and/or EUL has not been
specified) or for eliminating parts of a text part
already selected with AUL/EUL which is to be repeated
in the continuation form. [IX]

ULI Additional specifications for AUL, EUL and (UL,)UL
[I] <1,0>

Two numerical values can be specified:

1st number: Specification analogous to parameter AEI
for COPY

2nd number: Specification analogous to parameter KLI
for COPY

UTR Separator character string, up to which point a text
part is to be repeated in continuation forms (see also
parameter UEW) [IX]

UTE Text part to replace text eliminated by parameter UTD.
[II] </ .../>

FNR Specifies at which point in the form a running form
number is to be inserted. Continuation forms are not
counted here; they are assigned the same number as
their corresponding initial form. [I]

Four numerical values can be specified here:

1st number: Line number
2nd number: First character position
3rd number: Last character position
4th number: Number of the first form <1>

NFF Specifies at which point in a form a running number is
to be inserted in case continuation forms must be
generated. Please note that the specified field should
be large enough to accomodate character strings
specified in the parameter NFE. [I]

Three numerical values can be specified here:

1st number: Line number
2nd number: First character position
3rd number: Last character position

NFE Text parts to be inserted at the beginning/end of the
field specified in parameter NFF, in case continuation
forms must be generated. [II] </-/-/>

MFF Maximum number of continuation forms to be generated
(for one text unit). [I] <2>

GFORMS - 496 - TUSTEP

If the number specified here is exceeded, the rest of
the text unit will not be processed and the
appropriate error message will appear.

LCH Specifies which position in the form must always
remain blank (e.g. to leave space for binder holes in
catalog cards). This position will be skipped when it
is located within a form field where a text part is to
be printed. [I]

Four numerical values can be specified here:

1st number: First line
2nd number: Last line
3rd number: First character position
4th number: Last character position

TUSTEP - 497 - GFORMS

Alphabetical list of parameters

(UL Repeating text parts in case of overflow: exclusion 495
)UL Repeating text parts in case of overflow: exclusion 495
AA Start of a text unit 490
AE End of a text unit 490
ANR Orzanizing a text unit (paragraph) according to number 490
AUL Beginning marker for repetition in case of overflow: 494
AZN Beginning line number of text parts in the form . . 492
BER Defining an area from the SOURCE file 486
DPA Beginning printing position of individual text parts 492
DPE End printing position of individual text parts . . 492
DR Specifications for printer output control 487
DRT Type of printer for output 489
DRZ Additional specifications for printer output control 487
EGA Supplementing at beginning of individual text parts 491
EGE Supplementing at end of individual text parts . . . 491
ERG Supplementing before every text unit 491
EUL End marker for repetition in case of overflow . . . 494
EZN End line number of text parts in form 492
FNR Position for form number 495
FT Footers . 489
KT Headers . 488
LCH Free space for punch holes 496
MAX Maximum text units for test runs 486
MFF Maximum number of continuation forms 495
NFE Supplementation for numbering continuation forms . 495
NFF Positions for numbering continuation forms 495
NR Number of first page 489
SM Frequency of perforation marks 489
STR Rejoining hyphenated words in input data 490
TAB Character strings serving as tabulators 493
TFZ Positioning text at tab stops 493
TNR Tabulator numbers 493
TPO Tabulator positions 493
TTF Continuation of text parts 491
TTK Markers for text parts 491
TTS Hyphenation within text parts 493
TTV Dividing a text part into various form fields . . . 494
UEF Continuation of a form field in case of overflow . 494
UEL Rules for overflowing form fields 494
UEW Repetition of text parts in case of overflow . . . 494
ULI Index for AUL, EUL and (UL,)UL 495
UTE Replacement for text cut off by UTR 495
UTR Separator charactor for repeating text in case of overflow

 . 495
XX Replacing character strings in text unit 491
ZA Beginning-of-line within text parts 493
ZAB Conditional beginning-of-line with text parts . . . 493
ZE End-of-line within text parts 493
ZEB Conditional end-of-line within text parts 493
ZEN Centering individual text parts 492
ZW Line break within text lines 493

* * * * *

 - 498 -

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 G E N E R A T E I N D E X

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

GINDEX - 500 - TUSTEP

Survey:

Command . 501

 Specifications . 501
 Features . 502
 Note . 502

Parameters . 503

 Notes concerning supplementary text based on entry type 503
 Notes concerning the KWIC index 503

 Parameters for LISTING file settings 504
 Input data format 507
 Selecting input data 508
 Selecting type of index entry 508

 Defining the text parts of index entries 509
 Inserting/suppressing line breaks 510
 Selecting index entries and key words 510
 Treatment of identical text parts 512
 Replacing text parts or characters within text parts . 512
 Adding characters to individual text parts 512
 Positioning text parts 513
 Inserting a running number before text parts 513
 Inserting characters around the running number 513
 Positioning the running number 514
 Inserting the absolute frequency after text parts . . 514
 Inserting characters around the absolute frequency . . 514
 Positioning the absolute frequency 514
 Inserting relative frequency after text parts 515
 Inserting characters around the relative frequency . . 515
 Positioning the relative frequency 515

 Inserting characters around references 516
 Defining reference parts 516
 Selecting references 516
 Treatment of identical reference parts 517
 Replacing reference parts or characters in reference parts
 . 517
 Adding characters to reference parts 517
 Adding characters to grouped references 517
 Positioning reference parts 518
 Inserting reference frequency specifications 518
 Adding characters to a reference frequency specification 519
 Positioning the reference frequency specification . . 519
 Adding characters to the context 519

 Adding characters to the key word 519
 Positioning the key word 520

 Inserting a running head 520
 Adding characters to the running head 520
 Replacing characters in running heads 520
 Headings when the initial letter changes 521
 Limiting record length 521

TUSTEP - 501 - GINDEX

 Alphabetical list of parameters 523

GINDEX - 502 - TUSTEP

Command:

#GINDEX

Specifications:
SOURCE = file Name of the file containing the index

entries to be edited or containing the
entries for the KWIC index.

= -STD- The standard TEXT file contains the index
entries to be edited or the entries for
the KWIC index.

DESTINATION= - * Output to the LISTING file only

= file Name of the file to which the generated
index is to be written

= -STD- The generated index is to be written to
the standard TEXT file.

MODE = + * Generate index; the input data contain a
reference field

= - Generate index; the input data do not
contain a reference field

= KWIC Generate KWIC index

ERASE = - * If the DESTINATION file or the LISTING
file already contains data, they are to
be retained.

= + If the DESTINATION file or the LISTING
file already contains data, they are to
be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

DATA = - * SOURCE file contains the index entries in
their entirety.

= file Name of the file containing that part of
each index entry or of each KWIC index
entry that was not required for sorting

= -STD- The standard DATA file contains that part
of each index entry or of each KWIC index
entry that was not required for sorting.

LISTING = -STD- * The formated index is to be written to
the standard LISTING file.

= file Name of the file to which the formated
index is to be written.

TUSTEP - 503 - GINDEX

= - No output of formated index

Features:

With this command index entries and text units can be processed
and combined into an index (list of word forms; KWIC index) or
directory (e.g. bibliographies). The SOURCE file contains the
index entries or text units which have been generated and
prepared for sorting with PINDEX or PRESORT and have then been
sorted with SORT. Other data can be processed also, provided
each input record contains a text unit.

Among other features, this program lets the user add control
characters and markers, choose any format for the print output,
generate titles and running headers, select index entries and
text units, structure index entries hierarchically into entries
and subentries, and calculate absolute and relative frequencies.

Notes:

For printing the generated index or directory with the command
#PRINT, the LISTING file must be used, not the DESTINATION file.
The DESTINATION file is needed when the index or the directory
is to be used for further processing (e.g. for photo
composition); in this case, it is not possible to generate a
LISTING file simultaneously with this program.

GINDEX - 504 - TUSTEP

Parameters
 Values in [] refer to the type of parameter

employed; they are defined in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to default settings.

In addition to the following parameters, other parameters can be
used to define character groups and character strings. [V]

An "n" located after the parameter identification stands for a
digit in column 7 of the parameter. It designates the text part
or the reference part referred to by the respective parameter.

Notes concerning supplementary text based on entry type

When generating an index, the user can also insert additional
character strings at different positions of an index entry.
These character strings can be specified with the appropriate
parameter. The description of each of these parameters will
specify that such inserted character strings are added in a
"type-dependent" manner. This means that for these parameters a
corresponding character string can be specified for each type of
index entry possible. The first character string is valid for
type 1 index entries, the second string for type 2 entries, etc.
It may be necessary to specify empty character strings for
missing entry types in order to keep all assignments in their
proper order. If a character string (even an empty one) is not
specified for all entry types occurring in such parameters, the
last character string given in the parameter will be inserted
for the missing character string. Therefore, if the same
character string is to be inserted regardless of the type of
index entry, this character string has to be specified only once
with the appropriate parameter.

Notes concerning the KWIC index

For the purposes of this program, a KWIC index is, in a strictly
logical sense, an index of word forms (with each index entry
consisting of a single text part), where

- the text part consists of the respective key word,

- references are not grouped together,

- each reference starts in a new line,

- each reference is followed by the context, in which the key
word appears.

Thus the same parameters can be used for a KWIC index as for an
index of word forms. However, some parameters are irrelevant for
generating a KWIC index, such as those used to combine

TUSTEP - 505 - GINDEX

references. Furthermore, additional parameters are available for
an entry às context.

Parameters for LISTING file settings

DR Printer output control [I]

Four numerical values can be specified:

1st number: Columns <1>

Number of columns appearing side-by-side on
every page

2nd number: Left margin <10>

Number of blanks to the left of the first
column

3rd number: Column width <64>

Number of characters per column

4th number: Space between columns <0>

Number of blank spaces between columns

DRZ Additional specifications for printer output control
[I]

Seven numerical values can be specified:

1st number: Header <3>

Number of lines for the header (including blank
lines)

2nd number: Height of column <60>

Number of lines per column (excluding lines for
the header and footer).

3rd number: Footer <0>

Number of lines for the footer (including blank
lines)

4th number: Columns <1>

Number of columns per page

5th number: Repetition of footer text

Number of lines of the page às footer text
(counting from the first line down) which are

GINDEX - 506 - TUSTEP

to be repeated after every column (except for
the last column).

6th number: blank lines <0>

Number of blank lines between individual
columns

7th number: Repetition of header text <0>

Number of lines of the page às header text
(counting from the bottom line to the top)
which are to be repeated before every column
(except for the first column).

KT Text parts to be printed at the top of every page as a
header [II]
<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx" or
"xx.xx.xx" at the appropriate position. Positions for
the current time may be indicated by "xx.xx" and for
the page number by "xxxxxx" (2 to 6 "x"s, but at least
as many positions as necessary for the page number).
If "- xxxxxx -" is entered for the page number, it
will appeared centered on the page between two minus
signs, with each minus sign separated from the page
number by a space having the width of up to one whole
blank. However, the date, time and page number can be
inserted only one time each.

If a character string begins with a "*:", the rest of
the character string serves as a header for every text
column. If a numeral n is entered in place of the
asterisk, the rest of the character string is used as
a header for the nth column. If the numeral given
equals 0, the rest of the character string is used for
the entire line. If a character string does not begin
as just described, "0:" is assumed (standard value).

The following rules determine which line of the header
is used by the character string: A character string
which is designated for an entire line will be printed
at the start of a new line (starting with the first
line). A character string which is designated for a
particular column will be printed in the same line as
the preceding character string, unless this line
contains text meant for an entire line, for the same
column, or for a column further to the right. In this
case, the character string will be printed in the next
line.

Each of the specified character strings can be
arranged in three parts by using the formatting
instructions "@z" and "@/":

left-aligned @z centered @/ right-aligned
The individual parts will be inserted left-aligned,
centered and right-aligned. An individual part may be
omitted; in this case the formatting instructions in

TUSTEP - 507 - GINDEX

front of the second and third parts may also be
omitted.

KTZ Specifies whether the header text is to be printed on
the first page. [I] <0>

0 = Suppress header text
1 = Print header text

FT Text parts (analogous to those described in parameter
KT) to be printed as a footer at the bottom of every
page. [II]

Date, time and page number may not be inserted in the
footer if already specified for the header text.

DRT Printing device for which the data are to be prepared.
[XI]

This parameter is obligatory.

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST,PRINTERS.

NR Initial page number for output [I] <1>

ROM Specifies whether Arabic numerals or Roman numbers are
to be used for the page number in the header or footer
text. [I] <0>

0 = Arabic numerals
1 = Roman numbers in lowercase letters
2 = Roman numbers in uppercase letters

DRE n Printer output control for a new entry starting with
text part n. [I]

Six numerical values can be specified:

1st number: Line feed before entry <1>

Number of line feeds (= blank lines + 1) before
a new entry. When specified between two entries
the larger of this parameter às 1st and 3rd
numbers will be used for line feed control.

2nd number: Remaining lines <1>

Minimum number of lines which must be available
in a column for a new entry to be started in
this column. Otherwise the entry will be
started in a new column.

GINDEX - 508 - TUSTEP

3rd number: Line feed after an entry <1>

Number of line feeds (= blanks lines + 1) after
an entry. If specified between two entries, the
larger of this parameter às 1st and 3rd numbers
will be used for line feed control.

4th number: Indentation for new entry <0>

Number of blanks placed before a new entry

5th number: Indentation of continuation lines <4>

Number of blanks placed before continuation
lines.

6th number: Line feed before continuation lines <1>

Number of line feeds (= blank lines + 1) before
continuation lines.

DRA n Printer output control for a change in the initial
letter of an entry beginning with text part n. [I]

Specifications correspond to those in parameter DRE.

Input data format The specifications entered for the following
four parameters must have the same values as
those used for preparing the data with the
programs PINDEX or PRESORT.

One exception, however, applies to parameters SNL and SSL: If
the sort number and/or the sort key have been eliminated during
a sort of the prepared data (as specified with the DELETE
parameter of the command #SORT), the parameters SNL and/or SSL
must be used to specify the value zero.

Parameter SSL is obligatory; all others may be omitted if they
were not specified when the data were prepared.

IRL Internal reference length [I]

SNL Length of sort number [I]

SSL Length of sort key [I]

HFL Length of frequency specification [I]

TUSTEP - 509 - GINDEX

Selecting input data

MAX For trial runs, this specifies the maximum number of
entries to be either processed or outputted, or the
maximum number of pages to be prepared. [I]

Three numerical values can be specified:

1st number: maximum number of entries to be read
<999999>

2nd number: maximum number of entries for output
<999999>

3rd number: maximum number of pages for output
<999999>

Specifying type of index entry

Every index entry is assigned to an index type by which it can
be classified.

However, when MODE=- index entries are not specified according
to their type; here the index entries will be treated as if they
were all assigned to entry type 1.

TYP Redefining entry type 0 as another type [I] <1>

TXT Specifies whether the entry - depending on its type -
(including any references it may have) is to be
outputted (1) or not (0). [I] <1,1,...>

Each selection is based on the entry às original type;
evaluation of parameters TFT and TFR, if specififed,
takes place after this parameter is processed.

REF Specifies whether the reference (depending on its
type) is to outputted (1) or not (0). [I] <1,1,...>

Each selection is based on the entry às original type;
evaluation of parameter TFR, if specified, takes place
after this parameter is processed.

Identical index entries or identical text parts of index entries
will not be compiled unless they have been assigned to the same
entry type. Any redefinitions of the original entry type as
specified with parameter TFT will be taken into account. The
same also applies to the grouping of identical references or
reference parts, with any redefinitions specified in parameter
TFR being taken into account.

If the program is to group together index entries, which for
example were originally assigned different types yet whose
references differ in terms of their entry type (e.g. italics or

GINDEX - 510 - TUSTEP

supplemented text, cp. "Notes concerning type-dependent
insertions" page 503), the following steps should be taken.

- Assign the same type to each text part of these index entries
using parameter TFT.

- Assign a different type to each reference part using parameter
TFR if it has been specified.

TFT n Redefining index types for text part n. [I]
<1,2,3,...>

TFR n Redefining index types for reference part n. [I]
<1,2,3,...>

Defining the text parts of index entries

Index entries consisting of more than one text part (e.g. main
and secondary terms) can be subdivided with the use of separator
characters. In this case, parameter TT must specify the maximum
number of text part divisions, and parameter TR must specify all
separator strings. If index entries are not to be subdivided,
none of the following parameters need to be specified.

TT Maximum number of text parts (up to 9) which may
comprise an index entry [I] <1>

TR Character strings used to separate text parts [IX]

TRN Specification parallel to TR: the given character
string shall count as a separator character for at
least the nth level (separator number) [I] <1,1,...>

TRV Specification parallel to TR: the given character
string is to be used as a separator character from the
nth level only [I] <1,1,...>

TRB Specification parallel to TR: the given character
string is to be used as a separator character up to
and including the nth level [i] <9,9,...>

TRU Specification parallel to TR whether the separator
character should be suppressed (1) or not (0). [I]
<0,0,...>

Regardless of the specification made in this
parameter, the separator character between two text
parts will always be suppressed when a new line is
started at this position during output of the index
entry due to the parameters NZB and NZ described
below.

TUSTEP - 511 - GINDEX

Inserting/suppressing line breaks

NZB New line after every text part (with omission of the
separator character) up to and including the text part
whose number is entered here. [I] <0>

NZ n New line (with omission of the separator character)
after text part n: 0 = no, 1 = yes [I] <0>

NZU Suppress new line starting with the specified text
part m: if the first m-1 text parts in successive
entries are identical, no line break will be carried
out in front of such entries. [i] <10>

Selecting index entries and key words

If not index entries (when MODE=KWIC all key words) are to be
included in the output, the following parameters (in addition to
the selection parameter TYP) can be used to select those index
entries which should be included in the output.

If the nth text part of an index entry (when MODE=KWIC: of the
key word) matchs the string specified in Parameter T+ or T+U,
the entry will be included in the output. In this case the entry
will not be subject to any more checks based on the remaining
parameters described in this section. If no other parateters in
this section have been specified, only these index entries will
be outputted.

T+ n Text parts, of which one must match text part n of an
index entry or key word for the index entry to be
included in the output. [III]

No distinction is made between uppercase and lowercase
letters.

T+U n Text parts, of which one must match text part n of an
index entry or keyword for the index entry to be
included in the output. [III]

A distinction will be made between uppercase and
lowercase letters.

If the nth text part of an index entry (when MODE=KWIC of the
key word) does not match the string specified in parameter T- or
T-U, the index entry will not be included in the output. In this
case the entry will not be subjected to any more checks based on
the remaining parameters in this section.

GINDEX - 512 - TUSTEP

T- n Text parts, none of which may match text part n of an
index entry or keyword for the entry to be included in
the output. [III]

No distinction is made between uppercase and lowercase
letters.

T-U n Text parts, none of which may match text part n of an
index entry or keyword for the entry to be included in
the output. [III]

A distinction will be made between uppercase and
lowercase letters.

The parameters ZF+, TA+ and TE+ can abe used to specify
conditions under which an index entry is to included in the
output. If one or more of these parameters are used, at least
one of the specified conditions must be fulfilled if the index
entry is to be included in the output.

ZF+ n Character strings, of which at least one must occur in
the nth text part of the index entry or in the key
word if the index entry is to be outputted to the
index. [IX]

TA+ n Character strings, of which at least one must match
the nth text part of the index entry, or the beginning
of the key word, if the index entry is to be outputted
to the index. [VIII a]

TE+ n Character strings, of which at least one must match
the end of the nth text part of the index entry, or
match the end of the key word, if the index entry is
to be outputted to the index. [VIII b]

The parameters ZF-, TA- and TE- can be used to specify
conditions under which an index entry is not to be included in
the output. If one or more of these parameters are used, an
index entry will be omitted from the output if it fulfulls one
of the specified conditions.

ZF- n Character strings, none of which may occur in the nth
text part of the index entry, or in the key word, for
the index entry to to be written to the index. [IX]

TA- n Character strings, none of which may match the
beginning of the nth text part of the index entry, or
the beginning of the key word, for the index entry to
be written to the index. [VIII a]

TUSTEP - 513 - GINDEX

TE- n Character strings, none of which may match the end of
the nth text part of the index entry, or the end of
the key word, for the index entry to be written to the
index. [VIII b]

If one or more of the parameters ZF+, TA+ and TE+ as well as one
or more of the parameters ZF-, TA- and TE- have been specified,
an index entry must fulfill at least one of the conditions of
parameters ZF+, TA+ or TE+ and none of the conditions of
parameters ZF-, TA- or TE- to be included in the output.

Treatment of identical text parts

GKU Specifies whether a distinction should be made between
uppercase and lowercase letters (1) or not (0) when
comparing entries for identical text parts in the
grouping of index entries. [I] <0>

TTE n Character strings, which (depending on the type of
entry) are to replace text part n (which is omitted
due to being identical to the same text part of the
preceding entry) [II] < > < > ...

TTW n Allow repetition starting with the specified text part
in case identical text parts of the preceding levels
would be omitted up to text part n [I] <n+1>

Replacing text parts or characters within text parts

TTT n Replacing text part n [IV]

XTT n Replacing character strings in text part n [X]

LTT n Character strings, which (depending on the type of
entry) are to be inserted as a replacement for an
empty text part n [II]

Adding characters to individual text parts

VTT n Character strings, which (depending on the type of
entry) are to be inserted in front of text part n.
[II]

NTT n Character strings, which (depending on the type of
entry) are to be inserted after the text part n. [II]

GINDEX - 514 - TUSTEP

Positioning text parts

The following two parameters affect only the LISTING file.

TTP n Horizontal position in the LISTING file which is to be
reached after text part n (if necessary, to be filled
out with blanks) [I] <0>

TTZ n Additional specification to TTP: in the field whose
right border has been defined by TTP, the text part n
is to be printed left-aligned (0) or right-aligned (1)
[I] <0>

Inserting a running number before text parts

A running number will only be inserted if the value specified
for parameter LN is not equal to zero.

LN n Length of the field to be reserved for the running
number in front of text part n [I] <0>

LNB n Basic value which is to be added to the running number
for text part n. [I] <0>

LNN n The running number for text part n is to be reset to 0
if the text part n changes with a specified (or
higher) number. [I] <0>

LNW n If text part n is repeated (see parameter TTW), the
running number is either to be repeated (1), or not to
be repeated (0) [I] <1>

Inserting characters around the running number

VLN n Character strings, which (depending on the type of
entry) are to be inserted before the running number
located in front of text part n. [II] < >

NLN n Character strings, which (depending on the type of
entry) are to be inserted after the running number
located in front of text part n. [II] < >

TUSTEP - 515 - GINDEX

Positioning the running number

The two following parameters affect only the LISTING file.

LNP n Horizontal position in the LISTING file to be reached
after the running number (if necessary, to be filled
out with blanks) [I] <0>

LNZ n Additional specification to LNP: in the field whose
right border has been defined by LNP, the running
number is to be printed left-aligned (0) or
right-aligned (1) [I] <0>

Inserting the absolute frequency after text parts

The absolute frequency will inserted only if the value specified
for parameter AH is not equal to zero.

AH n Length of the field to be reserved for the absolute
frequency after text part n. [I] <0>

AHW n If text part n is repeated, the absolute frequency is
also to be repeated (1), or is not to be repeated (0).
[I] <0>

Inserting strings around the absolute frequency

VAH n Character strings, which (depending on the type of
entry) are to be inserted before the absolute
frequency following text part n. [II] < (>

NAH n Character strings, which (depending on the type of
entry) are to be inserted after the absolute frequency
following text part n. [II] <)>

Positioning the absolute frequency

The following two parameters affect only the LISTING file.

AHP n Horizontal position in the LISTING file which is to be
reached after the absolute frequency following text
part n (if necessary, to be filled out with blanks)

[I] <0>

AHZ n Additional specification to AHP: in the field whose
right border has been defined by AHP, the absolute

GINDEX - 516 - TUSTEP

frequency located after text part n is to be printed
left-aligned (0) or right-aligned (1) [I] <0>

Inserting the relative frequency after text parts

The relative frequency is inserted only when the value specified
in parameter RH is not equal to zero.

RH n Length of the field which is to be reserved for the
relative frequency after text part n. [I] <0>

RHD n Decimal places for relative frequency after text
part n [I] <2>

RHB n The relative frequency after text part n is not based
on the total number of records that are read, but on
the frequency of the higher-level text part whose
number is specified here. [I] <0>

RHW n If text part n is repeated, the relative frequency is
also to be repeated (1), or not to be repeated (0).

[I] <0>

Inserting characters around the relative frequency

VRH n Character strings, which (depending on the type of
entry) are to be inserted in front of the relative
frequency following text part n [II] < >

NRH n Character strings, which (depending on the type of
entry) are to be inserted after the relative frequency
following text part n. [II] <^ ̌

Positioning the relative frequency

The following two parameters affect only the LISTING file.

RHP n Horizontal position in the LISTING file which is to be
reached after the relative frequency following text
part n (if necessary, to be filled out with blanks).

[I] <0>

RHZ n Additional specification to RHP: in the field whose
right border has been defined by RHP, the relative
frequency located after text part n is to be printed
left-aligned (0) or right-aligned (1). [I] <0>

TUSTEP - 517 - GINDEX

Inserting characters around the references

VRF Character strings which (depending on the type of the
last text part) are to be inserted before the first
reference [II] < >

NRF Character strings which (depending on the type of the
last text part) are to be inserted after the last
reference. [II] <>

ZRF n Character strings which (depending on the type of the
last reference part) are to be inserted between the
individual references if the second reference
separated by ZRF begins with reference part n [II] < >

Defining reference parts

RFL Numerical values which specify the length of the
individual reference parts (see programm PINDEX) [I]

<6>

The number of reference parts is determined by the
number of numerical values specified (up to 9 values
possible).

Selecting references

MRF The output should also include references originally
excluded in PINDEX (parameter ORF) (1) or not (0). [I]

<0>

RFF An unbroken sequence of ascending references numbers
is to be grouped together (1) or the references are to
be listed individually (0). [I] <0>

RFU Suppress output of references if more than the
specified number of references would be outputed. [I]
<9999>

Note: References of index entries which are assigned
to a specific type can be suppressed with parameter
REF (see page 508).

RTU n Suppress reference part n (1); do not suppress (0).
[I] <0>

GINDEX - 518 - TUSTEP

Treatment of identical reference parts

RTE n Character strings which (depending on the type of
reference) are to replace reference part n, which has
been omitted due to its identity with the same part of
the preceding reference). [II] <>

RTW n Allow reference repetition, starting with reference
part whose number is specified here if the preceding
reference would have caused the omission of identical
higher-level reference parts up to part n.[I] <N+1>

Replacing reference parts or characters in reference parts

TRT n Replacing reference part n [IV]

XRT n Replacing character strings in reference part n [x]

LRT n Character strings, which (depending on the type of
reference) are to be used as a replacement for an
empty reference part-n [II] <>

Adding characters to reference parts

VRT n Character strings which (depending on the type of
reference) are to be inserted before reference part n.
[II] <>

NRT n Character strings which (depending on the type of
reference) are to be inserted after reference part n.
[II] <>

Adding characters to grouped references

References will be grouped into pairs if so requested
with parameter RFF, and if the references involved
have not been assigned a different treatment as
specified in parameters F1, F2, and F3. In addition,
references marked by the parameters VON and BIS in the
program PREPARE INDEX (PINDEX) will be grouped into
reference pairs; any references located between such
pairs will be ignored.

F Character strings which (depending on the type of
reference) are to be inserted after a reference marked
by the parameter MF in the program PINDEX. [II] <f>

TUSTEP - 519 - GINDEX

FF Character strings which (depending on the type of
reference) are to be inserted after a reference marked
by the parameter MFF in the program PINDEX. [II] <ff>

F1 Character strings which (depending on the type of
reference) are to be inserted after a reference which
would be followed by exactly a reference having the
next-higher number (cp. parameter RFF). [II]

F2 Character strings which (depending on the type of
reference) are to be inserted after a reference which
would be followed by exactly two references each
having the next-higher number than the reference
preceding them. (cp. parameter RFF) [ii]

F3 Character strings which (depending on the type of
reference) are to be inserted after a reference
followed by three or more references, each having the
next-higher number than the reference preceding them
(cp. parameter RFF). [II]

ZRP n Character strings (depending on the type of reference)
for reference grouping are to be inserted between a
reference pair if the second reference of the pair
begins with reference part n. [II] <->

Positioning reference parts

The two following parameters affect only the LISTING file.

RTP n Horizontal position in the LISTING file which is to be
reached after reference part n (if necessary, to be
filled out with blanks). [I] <0>

RTZ n Additional specification to RTP: in the field whose
right border has been defined by RTP, reference part n
is to be printed left-aligned (0) or right-aligned
(1). [I] <0>

Inserting reference frequency specifications

The reference frequency will only be inserted if the value
specified for parameter HF does not equal zero.

HF Field length of the frequency specification located
after a reference in case the index heading occurs
more than once with the same reference. [I] <0>

HFE Character strings which (depending on the type of
reference) replace a missing reference frequency
specification (because this is 1). [II] <>

GINDEX - 520 - TUSTEP

Adding characters to a reference frequency specification

VHF Character strings which (depending on the type of
reference) are to be inserted before the reference
frequency specification. [II] < (>

NHF Character strings which (depending on the type of
reference) are to inserted after the reference
frequency specification. [II] <)>

Positioning the reference frequency specification

The following two parameters affect only the LISTING file.

HFP Horizontal position in the LISTING file which is to be
reached after the reference frequency specification
(if necessary, to be filled out with blanks). [I]<0>

HFZ Additional specification to HFP: in the field whose
right border has been defined by HFP, the reference
frequency specification is to be printed left-aligned
(0) or right-aligned. (1) [I] <0>

Adding characters to the context (only when MODE=KWIC)

VK Character strings which (depending on the type of
entry) are to be inserted before the context. [II] <>

NK Character strings which (depending on the type of
entry) are to be inserted after the context. [II] <>

Adding characters to the key word (only when MODE=KWIC)

The following two parameters refer to the key word located in
the context. Whenever a new key word is added, it will be
written in an additional line of its own. The program will treat
this key word as a (single) text part of the index entry. For
this reason, specifications regarding this key word must be made
with the corresponding parameters for text part 1.

VSW Character strings which (depending on the type of
entry) are to be inserted before the key word in the
context . [II] <>

NSW Character strings which (depending on the type of
entry) are to be inserted after the key word in the
context. [ii] <>

TUSTEP - 521 - GINDEX

Positioning the key word (only when MODE=KWIC)

The following two parameters affect only the LISTING file. They
refer the key word located in the context (see note in the two
preceding parameters).

SWP Horizontal position to be reached either before or
after the key word. [I] <0>

SWZ Additional specification to SWP: The position
specified in parameter SWP is to be reached before (0)
or after (1) the key word. [I] <0>

Inserting a running header

At present, the parameters for running heads are only evaluated
for output to the DESTINATION file (but not to the LISTING)
file.

LK t n Text part n of the index entry is to be used as a
running head (1) or is not to be used as a running
head (0) [I] <0>

Supplementing running heads

VLK n Character strings which (depending on the type of
entry) are to be inserted before text part n in the
running head. [II]

NLK n Character strings which (depending on the type of
entry) are to be inserted after text part n in the
running head. [II]

Replacing character strings in running heads

XLK n Replacing character strings in text part n for the
running head. [X]

LLK n Character strings which (depending on the type of
entry) are to be used as a replacement for an empty
text part n in the running head. [II] <>

GINDEX - 522 - TUSTEP

Headings when the initial letter changes

AB n If there is a change in the initial letter of text
part n, it is to be written to the output as a single
uppercase letter (1) or is not to be written to the
output (0). [I] <0>

SAB n Character strings located at the beginning of text
part n which are to be skipped when a search is
carried out for the initial letter. [XI]

If format control characters are present at the
beginning of a text part, for example "#k+"
(= switches to small caps), these must be specified
with parameter SAB. Otherwise, the "k" in "#k+" would
be interpreted as an initial letter.

ABD Character strings which serve (or are to be defined)
as initial letters. [XI]

If parameter ABD is specified, the following parameter
ABE must also be specified.

ABE Text parts (parallel to ABD) which are to be included
in the output instead of initial letters. [II]

VAB n Character strings which (depending on the type of
entry) are to appear before a new initial letter. [II]

NAB n Character strings which (depending on the type of
entry) are to appear after a new initial letter. [II]

Limiting record length The following parameters only affect the
output to the DESTINATION file (but not
to the LISTING file).

SL Output record length [I]

In case this parameter is not specified, a single line
(index entry with references) will not be split
(however, see parameters NZB and NZ).

Two numerical values can be specified:

1st number: Maximum length of records to be split
because they are longer than the second
numerical value of this parameter. <99999>

2nd number: Maximum length for records not to be
split. werden sollen. <100 or value of 1st
number if this is greater than 100>

Before output, a line having more characters than
specified with the second number will be subdivided
into output records. The line will be subdivided into

TUSTEP - 523 - GINDEX

records having a maximum length specified by this
parameter às first number. The line is divided at any
blank which is not preceded by a "-" (exception: a
blank preceded by " -", since this "-" represents a
dash and can thus not be confused with a hyphen). If
such a division point cannot be found within the
number of characters specified by this parameter às
first number, the next possible division point will be
selected.

GINDEX - 524 - TUSTEP

Alphabetical list of parameters

AB New initial letter 521
ABD Defining initial letters 521
ABE Replacement string for initial letters 521
AH Field length for absolute frequency 514
AHP Position for absolute frequency 514
AHW Repeatition of absolute frequency 514
AHZ Position for absolute frequency - additional
specifications . 514
DR Printer output control 504
DRA Printer output control for new initial letter . . . 507
DRE Printer output control for new entry 506
DRT Printer . 506
DRZ Printer output control - additional specifications 504
F Characters after reference marked with "f" 517
F1 Characters after a reference with a following reference
 . 518
F2 Characters after a reference with two following references
 . 518
F3 Characters after a reference with three following
references . 518
FF Characters after a reference marked with "ff" . . . 518
FT Footer text . 506
GKU Distinguishing between uppercase and lowercase letters 512
HF Number of positions for reference frequency 518
HFE Replacement string for a reference frequency of 1 . 518
HFL Frequency specification: length 507
HFP Position for reference frequency 519
HFZ Position for reference frequency - additional
specifications . 519
IRL Internal reference: length 507
KT Header text . 505
KTZ Header text - additional specifications 506
LK Running heads 520
LLK Replacement string for an missing running head text 520
LN Number of positions for the running number 513
LNB Basic value for the running number 513
LNN Restarting the running number 513
LNP Positions for the running number 514
LNW Repeating the running number 513
LNZ Positioning the running number - additional specifications
 . 514
LRT Replacement string for an empty reference part . . 517
LTT Replacement string for and empty text part 512
MAX Maximum specs. for trial runs 508
MRF Marked references to output 516
NAB Characters inserted after a new initial letter . . 521
NAH Characters inserted after the absolute frequency . 514
NHF Characters inserted after the reference frequency . 519
NK Characters inserted after the context 519
NLK Characters inserted after running head 520
NLN Characters inserted after the running number . . . 513
NR Numbering output records 506
NRF Characters inserted after references 516
NRH Characters inserted after the relative frequency . 515
NRT Characters inserted after reference parts 517
NSW Characters inserted after key word 519
NTT Characters inserted after text parts 512
NZ New line after a text part 510

TUSTEP - 525 - GINDEX

NZB New line up to a certain text part 510
NZU Suppress new line 510
REF Output of certain reference types 508
RFF Grouping consecutive references 516
RFL Length of individual reference parts 516
RFU Suppress references above a certain frequency . . . 516
RH Total number of positions for absolute freuqency . 515
RHB Basis of absolute frequency 515
RHD Decimal positions for absolute frequency 515
RHP Position for relative frequency 515
RHW Repeating the relative frequency 515
RHZ Position for relative frequency - additional
specifications . 515
ROM Roman numbers for pagination 506
RTE Replacement string for a reference part 517
RTP Positioning a reference part 518
RTU Suppressing reference parts 516
RTW Repeating reference parts 517
RTZ Position for reference part - additional specifications
 . 518
SAB Searching for initial letter 521
SL Output record length 521
SNL Sort number: length 507
SSL Sort key: length 507
SWP Key word position 520
SWZ Key word position - additional specifications . . . 520
T+ Positive selection by entire text part 510
T+U Positive selection by entire text part 510
T- Negative selection by entire text part 511
T-U Negative selection by entire text part 511
TA+ Positive selection by text part beginning 511
TA- Negative selection by text part beginning 511
TE+ Positive selection by text part end 511
TE- Negative selection by text part end 512
TFR Redefining types for reference parts 509
TFT Redefining types for text parts 509
TR Separator between text parts 509
TRB Separator valid up to specific position 509
TRN Separator number 509
TRT Replacing reference parts 517
TRU Suppress separator character 509
TRV Separator valid after a specific position 509
TT Number of text parts in an index entry 509
TTE Replacement string for a text part 512
TTP Positioning text parts 513
TTT Replacing text parts 512
TTW Repeating text parts 512
TTZ Positioning text parts - additional specifications 513
TXT Selecting entries by type 508
TYP Entry type to be used instead of type 0 508
VAB Characters inserted before a new initial letter . . 521
VAH Characters inserted before absolute frequency . . . 514
VHF Characters inserted before reference frequency . . 519
VK Characters inserted before the context 519
VLK Characters inserted before running head 520
VLN Characters inserted before the running number . . . 513
VRF Characters inserted before references 516
VRH Characters inserted before relative frequency . . . 515
VRT Characters inserted before reference parts 517
VSW Characters inserted before key word 519

GINDEX - 526 - TUSTEP

VTT Characters inserted before text parts 512
XLK Replacing character strings in running heads . . . 520
XRT Replacing reference parts 517
XTT Replacing text parts 512
ZF+ Positive selection by character strings 511
ZF- Negative selection by character strings 511
ZRF Characters inserted between references 516
ZRP Characters inserted between reference pairs. . . . 518

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 G L I S T I N G

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

GLISTING - 528 - TUSTEP

Survey:

Command . 529

 Specifications 529
 Features 530

Modes . 530

 Selecting the mode 531

 MODE = T 531
 MODE = -STD- 531
 MODE = S 532
 MODE = O 532
 MODE = P 532
 MODE = A 532
 MODE = U 533

Parameters 534

 Selecting data 534
 Parameters for LISTING file settings 535

 Alphabetical list of parameters 538

TUSTEP - 529 - GLISTING

Command:

#GLISTING

Specifications:
SOURCE = file Name of the file containing the data to

be listed (i.e. of which a protocol is to
be generated) or (for MODE=A and MODE=U)
name of the file containing the protocol
of which certain parts are to be copied.

= -STD- The standard TEXT file contains the data
of which a protocol is to be prepared, or
contains the protocol of which parts are
to be copied.

MODE = T Insert page-line number in front of each
record (for data numbered in text mode).

= -STD- Begin a new page when the page number of
the record changes; insert the line
number in front of each record.

= S Begin a new page when the page number of
the record changes; no page-line number
before records.

= O No record numbers

= P Insert line number in front of each
record (for data numbered in program
mode, and for segment files).

= A The SOURCE file is a listing file;
selection by the page number part of the
record number.

= U The SOURCE file is a listing file; select
pages by the page number in the header
line.

= ... Type of printer for which the data are to
be prepared. The type of available
printers depends on the computer being
used. For a list of printers, use the
command #LIST,PRINTERS.

The printer can also be specified by
parameters.

ERASE = - * If the LISTING file already contains
data, they are to be retained.

= + If the LISTING file already contains
data, they are to be erased beforehand.

PARAMETER = file Name of the file containing parameters

GLISTING - 530 - TUSTEP

= * The parameters follow the command and are
ended by *EOF.

LISTING = -STD- * The generated listing is to be written
into the standard LISTING file.

= + The generated listing is to be written to
the journal (i.e. the screen, when in
interactive mode).

= file Name of the file into which the generated
listing is to be written.

Features:

With this command, a listing of a file can be generated, i.e. a
protocol of its data can be prepared. Control characters
included in the data are not intepreted but treated as printable
characters. To determine the form of the listing, parameters are
employed to specify, for example, the number of columns, headers
for pages and columns, type of numbering and line spacing.

Furthermore, specific pages of a listing file given in the
specification SOURCE can be selected and copied to the file
given for the specification LISTING.

Note

Data in the SOURCE file are never altered with this program. The
program às results (the data prepared for printing) are written
to the LISTING file, which can subsequently be sent to a printer
and printed out with the command #PRINT.

TUSTEP - 531 - GLISTING

Modes

Selecting the mode selection of the appropriate mode is
determined according to the data in the
SOURCE file and the type of record numbering employed:

Data Numbering Modes

Texts Text mode T, O, -STD-, S
Texts Program mode P, O
Programs Program mode P, O
Makros Program mode P, O
Protocols Text mode A, U

If a printer is given for the specification MODE instead of the
desired mode, the mode will be selected automatically according
to the following criteria: Mode P will be selected if the file às
records are numbered in program mode (this will be assumed if
the record number of the last record is less than 1000000) or if
the file is a segment file. Mode T will be used in all other
cases.

MODE = T

Records must be numbered in text mode. The page-line number and
the distinction number (if this is not zero) will appear in
front of every new record (but not in front of continuation
lines). The first 15 positions at the left margin are used for
this purpose. A running number of the pages prepared for
printing will be inserted in the page header. The record numbers
do not influence actual page breaks and the page number inserted
in the header.

This mode is used for files numbered in text mode which have not
yet been prepared for printing, and when none of the following
modes are more appropriate.

MODE = -STD-

Records must be numbered in text mode. The line number and the
distinction number (if this is not zero) will be printed before
each new record (but not before continuation lines). The first
12 positions of the left margin are reserved for this. The page
number of the record will be inserted in the page header. A new
page will begin each time the page number (part of the record
number) changes.

This mode should not be used when the records are numbered in
such a way that only few consecutive records in the file have
the same page number.

GLISTING - 532 - TUSTEP

MODE = S

The only difference between this mode and mode= -STD- is that
here no line numbers will be printed. The text starts directly
at the left margin.

This mode can be used when each page (i.e. records with the same
page number) consists of a text which is to be printed on its
own separate page, and when record line numbering is of no
significance.

MODE = O

In this mode, the record number of the records are not taken
into account and will not be printed. Text starts directly at
the left margin. A running number of the pages prepared for
printing will be inserted in the page header. The record numbers
do not influence page breaks and the number inserted in the
header.

MODE = P

This mode interprets record numbers in program mode (in all
other modes the records numbers are interpreted in text mode).
The line number and distinction number (if not zero) will be
printed in front of each record. The first 15 positions of the
left margin are reserved for this. A running page number of the
pages prepared for printing will be inserted in the page header.
A change in the page number (part of the record number) results
in the start of a new page; (for a segment file, the start of a
new segment).

This mode is used to print program and segment files. It is not
used for text files.

MODE = A

In this mode, the SOURCE file should be a file that contains
data already prepared for printing. This is generally a file
which has been written as a LISTING file in a previously-run
TUSTEP program. The essential characteristic of such a file is
that the first character of every record is a line-feed control
character (e.g. "-" for a new page, "1", "2" to "7" for a line
feed of 1, 2 to 7 lines) or another control character for the
command #PRINT. Such a file can be copied to another LISTING
file, where certain parts of the SOURCE file can be selected in
the process using parameters. If selection is carried out by
page number, please note that the page number of the record
number is used for selection, not that of the page number which
may appear in the printed header. To select pages corresponding
to the printed header page number, MODE U must be used instead.

TUSTEP - 533 - GLISTING

MODE = U

As in mode A, the SOURCE file should contain data that have
already beem prepared for printing. In contrast to mode A,
however, selection of page numbers with the parameter SKN is not
based on the page number of the record number but on the first
page number contained in the header line (first line of a page,
line-feed control character "-"). To determine which record
number is to be used for the page number in the header line, see
parameter SNR below. Parameter SKN is obligatory in mode U.

GLISTING - 534 - TUSTEP

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to default settings.

Selecting data

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of a single area ("page.line-page.line") or
a starting point ("page.line"). This parameter is only
used when not processing the entire input file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the file are in ascending order; the
parameters BER, SKN and DAE are mutually exclusive.
When MODE=P, this parameter can only be used to
specify a segment name. It cannot be used when MODE=A
and MODE=U (Tip: select data with SKN or DAE instead).

SKN Specifies the page numbers (when MODUS=P line numbers)
of the records to be printed. When a page number (line
number) is specified, all records having this page
number (line number) will be printed. If a number of
successive pages (lines) are to be printed, an area
definition ("page-page" or "line-line") can be made.
In addition, more than one number (or pair of
numbers), each separated by an apostrophe, is possible
here. However, the page numbers (line numbers) must be
given in ascending order.

This parameter can only be used when the record
numbers of the file are in ascending order; the
parameters BER, SKN and DAE are mutually exclusive.
This parameter is obligatory for MODE=U. [XI]

DAE Number of records to be printed if only the beginning
and/or end of a file is to be printed. [I]

Two numerical values may be specified here:

1st number: beginning of file <0>

TUSTEP - 535 - GLISTING

Number of records starting from the beginning
of the file which are to be printed

2nd number: end of file <0>

Number of records starting at the end of the file which are to
be printed

The parameters BER, SKN and DAE are mutually
exclusive. This parameter cannot be used when MODE=U
(Tip: use MODUS=A instead).

SNR Character strings used to denote the page number. [IX]

This parameter can only be used when MODE=U

In MODE=U, the selection of pages to be copied is
carried out using the page number. This must be
located in the first line of every page (the line with
the line-feed control character "-"). The number which
first occurs after the character string specified in
this parameter will be interpreted as the page number.
If this parameter is not present, the number which
follows the character string "page" or, if the
character string "page" does not occur, the first
number in the line will be interpreted as the page
number.

Parameters for LISTING file settings

For MODE=A and MODE=U, the data must already be prepared for
printing. Therefore, for these two modes only the parameters
listed under "Selecting data" are allowed.

DR Printer output control [I]

Five numerical values can be specified:

1st number: columns <1>

Number of columns to be printed side-by-side on
every page.

2nd number: Left margin <0>

Number of blanks to the left of the first
column

3rd number: Width <132>

Number of characters per column

GLISTING - 536 - TUSTEP

4th number: Space between columns <0>

Number of blanks between columns

5th number: Indentation for continuation lines <0>

Number of blanks at the start of continuation
lines (for Modes T, P and -STD-: in addition to
the 15 or 12 positions reserved for numbers in
the left margin)

DRZ Additional specifications for printer output control
[I]

Seven numerical values can be specified:

1st number: Header <3>

Number of lines for the header (including blank
lines)

2nd number: Column height <60>

Number of lines per column (excluding lines for
the header and footer)

3rd number: Footer <0>

Number of lines for the footer (including blank
lines)

4th number: Columns <1> Number of columns per page

5th number: Repetition of footer text

Number of lines of the page às footer text
(counting from the first line down) which are
to be repeated after every column (except for
the last column).

6th number: Blanks between columns <0>

Number of blanks between each column

7th number: Repetition of the header text <0>

Number of lines of the page às header text
(counting from the bottom line to the top)
which are to be repeated before every column
(except for the first column).

KT Text parts to be printed at the top of every page as a
header [II]
<"file name" xx. xxx. xxxx xx.xx xxxxxx>

To insert the current date, enter "xx. xxx. xxxx" or
"xx.xx.xx" at the appropriate position. Positions for
the current time may be indicated by "xx.xx" and for

TUSTEP - 537 - GLISTING

the page number by "xxxxxx" (2 to 6 "x"s, but at least
as many positions as necessary for the page number).
If "- xxxxxx -" is entered for the page number, it
will appeared centered on the page between two minus
signs, with each minus sign separated from the page
number by a space having the width of up to one whole
blank. However, the date, time and page number can be
inserted only one time each.

If a character string begins with a "*:", the rest of
the character string serves as a header for every text
column. If a numeral n is entered in place of the
asterisk, the rest of the character string is used as
a header for the nth column. If the numeral given
equals 0, the rest of the character string is used for
the entire line. If a character string does not begin
as just described, "0:" is assumed (standard value).

The following rules determine which line of the header
is used by the character string: A character string
which is designated for an entire line will be printed
at the start of a new line (starting with the first
line). A character string which is designated for a
particular column will be printed in the same line as
the preceding character string, unless this line
contains text meant for an entire line, for the same
column, or for a column further to the right. In this
case, the character string will be printed in the next
line.

Each of the specified character strings can be
arranged in three parts using the formating
instructions "@z" and "@/":

left-aligned @z centered @/ right-aligned
The individual parts will be inserted left-aligned,
centered and right-aligned. An individual part may be
omitted; in this case the formatting instructions in
front of the second and third parts may also be
omitted.

FT Text parts (analogous to parameter KT) to be printed
as a footer at the bottom of every page. [II]

The date, time and page number may not be inserted in
the footer if they have already been included in the
header.

LZ Number of blank lines between printed lines. [I]

Two numerical values can be specified here:

1st number: Number of blank lines before every line in
which a new record begins. <0>

2nd number: Number of blank lines before every
continuation line. <0>

GLISTING - 538 - TUSTEP

DRT Printing device for which the data are to be prepared.
[XI]

This parameter cannot be specified for MODE=A and
MODE=U. Otherwise, this parameter is obligatory when
no printer has been given for the specification MODE
(and may only be specified in this case).

The types of available printers depends on the actual
computer being used. To obtain a list of these, use
the command
 #LIST, PRINTERS.

Alphabetical list of parameters

BER Selecting an area 534
DAE Selecting from beginning/end of file 534
DR Printer output control 535
DRT Printer . 538
DRZ Printer output control - additional specifications 536
FT Footer . 537
KT Header . 536
LZ Blank lines . 537
SKN Selecting pages 534
SNR Page number format 535

* * * * *

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 I N S E R T

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

INSERT - 540 - TUSTEP

Survey:

Command . 541

 Specifications 541
 Features 542

Data requirements 543

Selecting the mode 544

Program operation modes 546

 MODE = PARALLEL 546
 MODE = SORTED 546
 MODE = MORE 546
 MODE = LESS 547
 MODE = -STD- 547
 MODE = SHORT 547
 MODE = LONG 547
 MODE = GROUPS 548

Parameters 549

 Selecting data in the SOURCE file 549
 Length of short forms 549
 Short form markers in the SOURCE file 549
 Short form markers in the SHORTFORMS file . . 550
 Marking a group in the SHORTFORMS file . . . 550
 Marking inserted text parts 551
 Error log 551

 Alphabetical list of parameters 552

TUSTEP - 541 - INSERT

Command:

#INSERT

Specifications:
SOURCE = file Name of the file containing the data into

which text parts are to be inserted

= -STD- The data into which text parts are to be
inserted are located in the standard TEXT
file.

DESTINATION= file Name of the file to which the data with
the inserted text parts are to be written

= -STD- The data with the inserted text parts are
to be written to the standard TEXT file.

MODE = -STD- * Unique short forms, normal case

= SHORT Unique short forms, short text parts to
be inserted

= LONG Unique short forms, long text parts to be
inserted

= PARALLEL Short forms occur in the SHORTFORMS file
and in the SOURCE file in parallel
fashion.

= SORTED Short forms are sorted alphabetically.

= MORE The SHORTFORMS file contains more short
forms than the SOURCE file.

= LESS The SHORTFORMS file contains less short
forms than the SOURCE file.

= GROUPS The SHORTFORMS file contain groups, each
having the same short forms. A new copy
of the SOURCE file is to be made for each
group.

ERASE = - * If the DESTINATION file already contains
data, they are to be retained.

= + If the DESTINATION file already contains
data, they are to be erased beforehand.

PARAMETERS = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

SHORTFORMS = file Name of the file containing the text
parts to be inserted

INSERT - 542 - TUSTEP

Features:

With this program, text parts which are located in a file and
are indentifiable by a short form (e.g. a running number) can be
inserted into the data of another file. Each text part is
inserted at the position in the data where the corresponding
short form is located.

Examples of possible applications (the type of data located in
the SHORTFORMS file is given in parentheses):

- Merge footnotes into the text (footnotes)
- Replace short forms by full text (full text)
- Compile letters from text blocks (standard text)
- Generate form letters (one address per group)

TUSTEP - 543 - INSERT

Data requirements

The data into which the text parts are to be inserted must be
contained in the SOURCE file; the text parts which are to be
inserted must be contained in the SHORTFORMS file. The results
will be written to the DESTINATION file.

SHORTFORMS file: Each text part to be inserted must be preceded
by a short form by which the text part can be identified. These
short forms must be unambigiously marked by a beginning marker
before them and a end marker after them. The beginning marker
must be specified with parameter AKK, the end marker with
parameter EKK. If no data follow the short forms in the same
line, the end marker may be omitted, and parameter EKK need not
be specified. Markers for the text parts themselves are not
necessary. Each text part begins after the end marker for the
short form and ends before the beginning marker of the short
form for the next text part. A text part may take up a number of
lines. Line breaks within a text part will be kept when the text
part is inserted. If the short forms are arranged in groups,
where each group has the same short forms but different text
parts for identical short forms, the start of each group must be
unambigiously marked by a beginning marker as specified in
parameter NKG.

SOURCE file: A short form must be located in the data at every
position where the corresponding text part is to be inserted.
This short form must also be unambigiously marked by a beginning
marker in front of it and an end marker after it. The beginning
marker must be specified with parameter AKD, the end marker with
parameter EKD. If no data follow the short forms in the same
line, the end marker may be omitted, and parameter EKD need not
be specified. Parameter KKZ can be used to determine whether the
markers for the short form and the short form itself should be
kept or eliminated. If necessary, an additional character string
can be added both before and after an inserted text part. These
character strings can be specified with parameter NAE.

Both the SOURCE file as well as the SHORTFORMS file may contain
more than one short form (each with a beginning and end marker)
per line. However, related beginning and end markers must be
kept together in the same line.

INSERT - 544 - TUSTEP

Selecting the mode

If the short forms in the SHORTFORMS file are arranged in
groups, and a new copy of the SOURCE file is to be written to
the DESTINATION file for each group, select the following mode:

- MODE = GROUPS

 In this mode, a short form may occur in the SOURCE file any
number of times. However, in the SHORTFORMS file a short form
may appear only once in each group. Short forms may be given
in any order. However, the text parts which correspond to the
short forms given in the SOURCE file must be small enough in
size to be copied to the computer às memory.

If the short forms in the SOURCE and SHORTFORMS files have been
given in the same order, one of the following modes can be
selected:

- MODE = PARALLEL

 To be used when each short form in the SOURCE file has a
corresponding form in the SHORTFORMS file, and vice versa.
(for exceptions, see: "Program operation modes").

- MODE = SORTED

 To be used when the short forms in the SOURCE and SHORTFORMS
files are listed in alphabetical order.

- MODE = MORE

 To be used when the SHORTFORMS file has more short forms than
the SOURCE file, provided that all short forms occurring in
the SOURCE file also occur in the SHORTFORMS file.

- MODE = LESS

 To be used when the SHORTFORMS file has less short forms than
the SOURCE file, provided that all short forms occurring in
the SHORTFORMS file also occur in the SOURCE file.

When the order of short forms in the SOURCE file differs from
that in the SHORTFORMS file, only one of the following modes may
be selected. In this case, each short form may occur any number
of times in the SOURCE file, but only once in the SHORTFORMS
file. Short forms may appear in any order.

- MODE = -STD-

 To be used when the SHORTFORMS file is small enough to fit
into memory.

TUSTEP - 545 - INSERT

- MODE = SHORT

 To be used when there is not enough memory for MODE = -STD-
and when the text parts in the SHORTFORMS file which
correspond to the short forms in the SOURCE file are short
enough to be copied to memory.

- MODE = LONG

 when there is not enough memory for MODE=SHORT.

 If working in MODE=LONG also proves to exceed memory capacity,
either sort both the SOURCE and SHORTFORMS files so that the
short forms are arranged in alphabetical order and switch to
MODE=SORTED, or run the program a number of times in
MODE=LONG, while selecting with each run a different area of
the SOURCE file using parameter BER.

INSERT - 546 - TUSTEP

Program operation mode

In all modes, short forms which occur in the SOURCE file but
which cannot be found in the SHORTFORMS file will be transferred
to the DESTINATION file unaltered. If in this case an error
message is desired, this can be specified in parameter UND.

When short forms from the SOURCE and SHORTFORMS files are
compared, no distinction is made between uppercase and lowercase
letters.

For modes PARALLEL, SORTED, MORE and LESS, the following
applies:

The program reads the data from the SOURCE file and writes them
to the DESTINATION file while searching the data for short
forms. When a short form is found, it is then compared with the
next short form in the SHORTFORMS file. If the two short forms
match, the corresponding text part will be retrieved from the
SHORTFORMS file and inserted in the data. Otherwise the short
form found in the SOURCE file will be compared with the short
form in the SHORTFORMS file whose text part was last inserted.
If these two short forms match, the corresponding text part will
be retrieved from the SHORTFORMS file and inserted in the data.
If the two do not match, further processing will be determined
by the current mode in effect:

MODE = PARALLEL

If no matching short form can be found during the procedure
outlined above, the program will abort.

MODE = SORTED

If no matching short form can be found during the procedure
outlined above, the search in the SHORTFORMS file will continue
until the short form is found or until a short form is found
which would follow the searched short form in alphabetical
order. In the latter case, the short form is regarded as not
found; the search will then continue for the next short form in
the SOURCE file.

MODE = MORE

If no matching short form can be found during the procedure
outlined above, the search in the SHORTFORMS file will be
continued until the short form has been found. The short forms
in the SHORTFORMS file that have been passed over in the process
will no longer be taken into account. Thus, when a short form
has not been found when the end of the SHORTFORMS file has been
reached, the subsequent short forms in the SOURCE file will also
not be found.

TUSTEP - 547 - INSERT

MODE = LESS

If no matching short form can be found during the procedure
outlined above, the SOURCE file will be searched until the short
form has been found. Any short forms thus passed over in the
SOURCE file will remain unaltered.

MODE = -STD-

Upon reading the short forms and their corresponding text parts
from the SHORTFORMS file, the program creates an internal table.

After the table has been created, data are read from the SOURCE
file and are written to the DESTINATION file. In the process,
data are searched for short forms. When a short form is found,
the corresponding text part is retrieved from the table and
inserted into the data.

MODE = SHORT

The program first reads the SOURCE file and compiles an internal
table consisting of the short forms found. The SHORTFORMS file
is then searched for these short forms and the corresponding
text parts are added to the table.

After the table has been compiled, the program reads the SOURCE
file data and writes them to the DESTINATION file, while
searching the data for short forms. If a short form is found,
the corresponding text part is retrieved from the table and
inserted into the data.

This mode has one disadvantage compared to Mode = -STD- in that
the SOURCE file must be read twice instead of just once, a
process which consumes the corresponding amount of computer
time.

MODE = LONG

The program first reads the SOURCE file and compiles a table
consisting of the short forms found. The SHORTFORMS file is then
searched for these short forms and a pointer is added to the
table. This pointer refers to the position in the SHORTFORMS
file where the short form is located.

After the table has been compiled, the program reads data from
the SOURCE file and writes them to the DESTINATION file, while
searching the data for short forms. If a short form is found,
the pointer is used to retrieve the corresponding text part from
the SHORTFORMS file and insert it into the data.

This mode has one disadvantage compared to MODE = SHORT in that
the SHORTFORMS file must be read in random access fashion
instead of sequentially, thus increasing the amount of time
required for the process to a considerable degree.

INSERT - 548 - TUSTEP

MODE = GROUPS

The program first reads the SOURCE file and compiles a table
consisting of the short forms found. Then the first group in the
SHORTFORMS file is searched for these short forms and the
corresponding text parts are added to the table.

After the table has been compiled, the program reads data from
the SOURCE file and writes them to the DESTINATION file, while
searching the data for short forms. If a short form is found,
the corresponding text part is retrieved from the table and
inserted into the data.

After all SOURCE file data have been processed, the text parts
in the table are erased and the next group in the SHORTFORMS
file is searched for the short forms listed in the table, with
the corresponding text parts being added to the table. The
SOURCE file is then reprocessed and the entire procedure
repeated for each group in the SHORTFORMS file.

TUSTEP - 549 - INSERT

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to default settings.

In addition to the following parameters, other parameters can be
used to define character groups and character strings. [V]

Selecting data in the SOURCE file

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of a single area ("page.line-page.line") or
a starting point ("page.line"). This parameter is only
used when not processing the entire file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the file are in ascending order.

MAX For test runs, this specifies the maximum number of
input records that are to be processed. [I] <999999>

Length of short forms

MKL Maximum length of a short form (excluding beginning
and end markers). If a short form is longer than
specified here, it will be ignored. [I] <8>

Short form markers in the SOURCE file

Of the two following parameters, parameter AKD must always be
specified. Parameter EKD is only necessary when other data
follow the short form in the same line.

AKD Character strings which mark the beginning of a short
form. [IX]

INSERT - 550 - TUSTEP

EKD Character strings which mark the end of a short form.
[IX]

Each short form starts after the beginning marker and
ends before the end marker, or at the end of the line.
If a character string thus marked as a short form
contains any leading or trailing blanks, these blanks
will be ignored.

Each search for the beginning marker of the next short
form starts after the end marker of a short form. If
the end marker of a short form cannot be found in the
same line, the search for the next beginning marker
will start at the beginning of the next line.

Short form markers in the SHORTFORMS file

Of the following two parameters, parameter AKK must alway be
specified. Parameter EKK is only necessary when other data
follow the short form in the same line.

AKK Character string which marks the beginning of a short
form. [IX]

EKK Character string which marks the end of a short form.
[IX]

Each short form starts after the beginning marker and
ends before the end marker, or at the end of the line.
If a character string thus marked as a short form
contains any leading or trailing blanks, these blanks
will be ignored.

Each search for the beginning marker of the next short
form starts after the end marker of a short form. If
the end marker of a short form cannot be found in the
same line, the search for the next beginning marker
will start at the beginning of the next line.

Group markers in the SHORTFORMS file

This parameter is obligatory when MODE=GROUPS and may only be
used in this mode. It is used to specify how the beginning of a
group of short forms has been marked. The marker must be located
in the SHORTFORMS file at the start of each record with which a
new group begins. This marker can at the same time also be the
character string which marks the beginning of a short form (and
thus specified with parameter AKK).

NKG Character string placed at the beginning of a record
which marks the start of a new group of short forms.
[IX]

TUSTEP - 551 - INSERT

Text part markers in the DESTINATION file

KKZ Additional specifications as to whether the short
forms and their markers in the SOURCE file should be
retained in the DESTINATION file. [I] <0,0,0>

Three numerical values can be given here:

1st number: beginning marker of the short form

0 = is not to be retained
1 = is to be retained

2nd number: short form

0 = is not to be retained
1 = is to be retained

3rd number: the end marker of the short form

0 = is not to be retained
1 = is to be retained; the text part is to be

inserted after it.
2 = is to be retained; the text part is to be

inserted before it.

NAE Text parts (new beginning and end markers) which are
to be added to the beginning or end of the inserted
text part. [II]

Two text parts can be specified: the first will be
added directly in front of the inserted text part, the
second directly after it.

Error log

UND Specifies whether SOURCE file short forms not found in
the SHORTFORMS file should be recorded in the journal.
[I] <0>

0 = do not record
1 = record

INSERT - 552 - TUSTEP

Alphabetical list of parameters

AKD Beginning marker of a short form in the SOURCE file 549
AKK Beginning marker of a short form in the SHORTFORMS file

 . 550
BER Selecting an area in the SOURCE file 549
EKD End marker of a short form in the SOURCE file . . . 550
EKK End marker of a short form in the SHORTFORMS file . 550
KKZ Additional specifications for short form markers . 551
MAX Maximum number of records for trial runs 549
MKL Maximum length of a short form (short form length) 549
NAE New beginning and end markers 551
NKG Marker for a new group of short forms 550
UND Error log for undefined short forms 551

* * * * *

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 N U M B E R

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

NUMBER - 554 - TUSTEP

Survey:

Command . 555

 Specifications 555
 Features 556

Modes . 557

Parameters 558

 Selecting data 558
 Inserting a running number 558
 Updating reference numbers 559
 References to page and line numbers 559

 Alphabetical list of parameters 560

TUSTEP - 555 - NUMBER

Command:

#NUMBER

Specifications:
SOURCE = file Name of the file containing the data in

which numbers and/or references are to be
updated

= -STD- The standard TEXT file contains the data
in which numbers and/or references are to
be updated

DESTINATION= file Name of the file to which the data with
the updated nubmers and/or references are
to be written

= -STD- The data with the updated numbers and/or
references are to be written to the
standard TEXT file.

MODE = - * Normal case

= PUT The concordance of the old and the new
numbering is to be written to the
CONCORDANCE file. Any data contained in
this file will be erased regardless of
what has been given for the specification
ERASE.

= GET The concordance of the old and new
numbering is to be read from the
CONCORDANCE file.

= ADD The concordance of the old and the new
numbering in the CONCORDANCE file is to
be supplemented.

ERASE = - * If the DESTINATION file or the LISTING
file already contains data, they are to
be retained.

= + If the DESTINATION file or the LISTING
file already contains data, they are to
be erased beforehand.

PARAMETER = file Name of the file containing parameters

= * The parameters follow the command and are
ended by *EOF.

CONCORDANCE= - * Normal case

= file Name of the file to which the concordance
of the old and the new numbering is to be
written or which contains the
concordance.

NUMBER - 556 - TUSTEP

= -STD- The concordance of the old and the new
numbering is to be written to the
standard DATA file or is to be read from
the standard DATA file.

LISTING = - No protocol of the concordance of the old
and the new numbering

= + A protocol of the concordance of the old
and the new numbering is to be written to
the journal.

= -STD- * A protocol of the concordance of the old
and the new numbering is to be written to
the standard LISTING file.

= file Name of the file to which a protocol of
the concordance of the old and the new
numbering is to be written.

Features:

This command is used to update (running) numbers and the
respective references contained in a text. For this purpose,
running numbers can be inserted at positions marked
appropriately. (Old) numbers already present at these positions
will be replaced. Appropiately marked references which refer to
old numbers can also be be updated.

In addition, this command can be used to update references to a
page-line-number after the page-line-division has been changed.

TUSTEP - 557 - NUMBER

Modes

Running numbers and references are usually located in the same
file. In this case, the specification MODE does not have to be
given (i.e. equals MODE=-).

If the running numbers and the references are located in
different files, the file containing the running numbers must be
processed first. This step provides the information necessary
for updating the references, i.e. which old reference number is
to be replaced by which new reference number, or on which page
and line the reference points (= running numbers) are to be
located. This information (= concordance) must be saved in order
to be used when the program is called up a second time for
processing the file containing the references. For this purpose,
MODE=PUT is to be used when calling up the program for the first
time. The file given in the specification CONCORDANCE will be
used for saving the concordance information.
When the program is called up a second time for the purpose of
updating the references, MODE=GET is to be specified in order to
instruct the program to evaluate the saved concordance
information. The file given in the specification CONCORDANCE
must be the same given when the progam was called up for the
first time (with MODE=PUT).

If the data with the running numbers are located in more than
one file, each file must first be processed individually (using
the parameter LNR, without the parameter VNR; parameters SK and
ZK are necessary for handling any page-line numbers). The first
file must be processed in MODE=PUT and all other files in
MODE=ADD. In MODE=ADD, the concordance is first read (as in
MODE=GET) and then written back in its supplemented form (as in
MODE=PUT). Finally, the files containing the references are
processed in MODE=ADD (using the parameter VNR, without the
parameter LNR; parameters SK and ZK are necessary for inserting
any page-line numbers). For this procedure, the files may
contain running numbers and references.

NUMBER - 558 - TUSTEP

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

Values in < > refer to initial settings.

In addition to the following parameters, other parameters can be
used to define character groups and character strings. [V]

Selecting data

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of a single area ("page.line-page.line") or
a starting point ("page.line"). This parameter is only
used when not processing the entire file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the file are in ascending order.

MAX For test runs, this specifies how many imput records
are to be processed. [I] <999999>

Inserting a running number

LNR Character string after which the running number is to
be inserted. If a number is already located directly
after such a character string, it will be replaced.
Unless specfied otherwise in the parameter ART, the
running number will be increased by 1 each time a
character string specified in parameter LNR is
encountered. [IX]

For the DOS version, the greatest number allowed is
15 999, in all other versions: 99 999.

LNB Numerical value to be added to the running number. [I]
<0>

If the new running number is to begin with a number
other than 1, this parameter can be used to specify
the desired number. The first new running number will

TUSTEP - 559 - NUMBER

thus be one number larger than the value specified
here.

ART Specifies how the running number is to be incremented.
[I] <0>

0 = Each time a character string specified in the
parameter LNR is encountered, the running number
is to be increased by 1.

1 = The running number is to be increased by 1 only if
there is still no number in the input data located
directly after the character string behind which
it is to be inserted, or if the number at this
position in the input data occurs for the first
time. If this number has already been encountered
in the input data, it will be replaced by the same
number used at its first occurrence.

Updating the reference numbers

VNR Character string after which the reference number is
to be replaced. This reference number may not be
omitted. In addition, it must be used exactly once as
a running number located after a character string
specified in parameter LNR (Exception: when parameter
ART = 1). The reference number will be replaced by the
same number as its corresponding running number. [IX]

If the corresponding running number occurs more than
once, the reference will be altered according to the
first occurrence of the running number. Should the
corresponding running number be absent, the reference
number will be replaced by 0.

References to page and line numbers

By using the parameter SK, the program is instructed to insert
references to page numbers. If the parameter ZK is also
specified, line numbers will also be inserted.

In this case, running numbers merely serve to mark a reference
position and are not altered (the parameter ART is not allowed
here). The reference numbers also remain unaltered and merely
serve to specify to which position (i.e., the position of the
"running number" having the same number) the reference is to be
made.

The page number of the page to which the reference refers is
inserted in the text directly after the character string
specified in parameter SK. This character string must occur in
the text after the reference number and at the very latest in
the following line. If this character string is directly

NUMBER - 560 - TUSTEP

followed by a number, the number will be replaced. If parameter
ZK has also been specified, the line number of the line to which
the reference refers will be inserted in the text after the
character string specified in this parameter. This character
string must occur in the text after the character string for the
page number. Any number already located there will be replaced.

SK Character string which marks the position in the text
where the page number is to be inserted. [IX]

ZK Character string which marks the position in the text
where the line number is to be inserted. [IX]

Alphabetical list of parameters

ART Increasing the running number count 559
BER Selecting an area in the SOURCE file 558
LNB Base (initial) value for running number 558
LNR Marker for running number 558
MAX Maximum for trial runs 558
VNR Marker for reference number 559
SK Marker for page number 560
ZK Marker for line number 560

* * * * *

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 P R E P A R E I N D E X

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

PINDEX - 562 - TUSTEP

Survey:

Command . 563

 Specifications . 563
 Features . 564

General remarks . 565

Parameters . 567

 Selecting data . 567
 Organizing records into text units 568
 Replacing character strings during input 569
 Selecting text parts which contain index entries . . . 569
 Defining index entries 570
 Modifying index entries 571
 Assigning a type to each entry 571
 Determining key words 572
 Defining the reference 574
 Marking the reference 578
 Frequency specifications 579
 Inverting index entries 580
 Selecting index entries / key words 581
 Checking the length of index entries 583
 Supplementing index entries 583
 Sorting by group 585
 Determining the DESTINATION file 586
 Generating the sort keys for an index entry 587

Alphabetical list of parameters 591

Further processing of data after sorting 593

Structure of a data record 593

TUSTEP - 563 - PINDEX

Command:

#PINDEX

Specifications:
SOURCE = file Name of the file containing the data from

which index entries are to be extracted
or from which a KWIC index is to be
prepared

= -STD- The standard TEXT file contains the data
from which index entries are to be
extracted or from which a KWIC index is
is to be prepared

DESTINATION= file Name of the file to which the index
entries or the entries for the KWIC index
are to be written; more than one file
name is allowed

= -STD- The index entries or the entries for the
KWIC index are to be written to the
standard TEXT file.

MODE = + * Prepare index entries with references

= - Prepare index entries without references

= KWIC Generate entries for KWIC index

ERASE = * If the DESTINATION file, the DATA file or
the LISTING file already contains data,
their data are to be retained.

= + If the DESTINATION file, the DATA file or
the LISTING file already contains data,
their data are to be erased beforehand

PARAMETER = file Name of the file containing parameters.

= * Parameters follow the command and are
ended by *EOF.

DATA = - * The data are to be written to the
DESTINATION file in their entirety.

= file Name of the file to which the text part
(i.e. data not needed for sorting) of
each record is to be written

= -STD- The text part (i.e. data not needed for
sorting) of each record is to be written
to the standard DATA file.

LISTING = - * No trace listing

= + Trace listing is to be written into the
journal.

PINDEX - 564 - TUSTEP

= -STD- Trace listing is to be written into the
standard LISTING file.

= file Name of the file into which the trace
listing is to be written.

Features:

This program can be used to: appropriate composed into entities

- break down text into sortable entries appropriate for an index
(e.g. for an index of word-forms) or a KWIC index ;

- extract appropriately marked text parts from texts as index
entries (e.g. for an index of authors or a subject index).

TUSTEP - 565 - PINDEX

General remarks

Index entries are created by decomposing the input text by means
of separator character strings and/or by selecting text parts
located between beginning and end markers.

More than one text part can be used to compose an index entry.
To accomplish this, additional character strings taken from the
input text may be included in an index entry.

One to three sort keys can be created from the text of an index
entry. This is necessary because the order of characters in the
the computer às internal code does not correspond to the usual
alphabetical order. The sort key is used only for sorting
purposes and is eliminated thereafter. Only one sort key is
necessary for texts containing no umlauts or diacritical marks.
If the text contains umlauts, the usual alphabetical order (as
defined by DIN 5007) is preserved by encoding ä, ö, ü and ß as
ae, oe, ue and ss for the first sort key. A second key is
necessary, however, if words such as "Maße" and "Masse" or names
such as "Jäger" and "Jaeger" are to be kept separate from each
other. For this sorting key, ä, ö, ü and ß can be encoded as az,
oz, uz und sz. If a text contains diacritical marks, a second
sort key is also necessary. Normally, all diacritical marks are
eliminated for the first sort key in order that sorting can be
first carried out in alphabetical order; accents and other
diacritical marks only affect the order of two identical
characters. For the second sort key, each accent may be encoded
as a "z" followed by a decimal number, for example, so that
words which differ only by a diacritical mark may be arranged in
the desired order. In addition, if uppercase and lowercase
letters are decisive in the sorting process, a third key is
required. If, however, umlauts and diacritical marks do not
occur in the text, sorting of uppercase and lowercase letters
can be carried out in the second sort key.

If the index entries are already organized by group in the input
file, it is possible to sort the index entries within each of
the respective groups only. This requires that the beginning of
each group is marked in a unique way, such as using a marker
before each section title. Each group is numbered internally and
the corresponding number placed directly in front of the sort
key of the individual entries. This keeps the groups in their
original, unchanged order.

Index entries can be assigned to various types which are later
used to differtiate entries in a variety of ways (e.g.
typographically) when the index is actually being prepared. To
accomplish this, each entry is assigned a type identification
number whose value is based on the type identification character
taken from the input text. This type identification character
can be either placed before each index entry in the text, or it
can be specified as a general type identification. In the latter
case, it affects all subsequent index entries.

In case the index entries listed in the index are also to be
supplied with a reference to their original position in the
basic text, each index entry must be provided with such a
reference. If reference is to be made to the page number (as

PINDEX - 566 - TUSTEP

well as line and word number) in the text from which the index
is to be prepared, the reference can be taken from the record
number of the input text. Another possibility for supplying a
reference is to use text parts marked as such in the input text.
In this way, a reference may consist of a number of text parts.

The sort program (command: #SORT) requires a certain amount of
memory for temporary storage of the data to be sorted. Large
amounts of data may exceed available memory. This can usually be
avoided by outputting the sort key and the actual index entries
to separate files (DESTINATION file and DATA file,
respectively). Of these two files, only the DESTINATION file
containing the sort keys needs to be sorted. If the amount of
available memory is still too small for sorting, the sort key
can be distributed among a number of files. These must be sorted
individually and then merged into one file. To distribute the
sort key to more than one file, merely specifying a number of
DESTINATION files is sufficient; no additional parameters are
necessary for this purpose.

TUSTEP - 567 - PINDEX

Parameters

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the "Parameters"
chapter of "TUSTEP Basics".

In certain parameters, text parts can be selected for further
processing by means of beginning and/or end markers as well as
markers that serve as left and right parentheses for selecting
the desired part. The manner in which these parameters function
is also described at the end of the section entitled
"Parameters" in the chapter "TUSTEP Basics".

In addition to the parameters described below, parameters for
defining string groups and character groups may also
be employed. [V]

In addition to the parameter SSL, at least the parameter SWT
must be specified when MODE=KWIC; in all other modes,
one of the parameters EA, EE or TR must be specified.

Selecting data

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of an area ("page.line-page.line") or a
starting point ("page.line"). This parameter is only
used when not processing the entire file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the file are in ascending order.

MAX For test runs, this specifies the maximum number of
text units (= input records, if none of the parameters
ANR, AA or AE has been given) that should be used for
creating index entries and/or the maximum number of
index entries to be created. [I]

Two numerical values can be specified:

1st number Max. number of text units to be read
<999999>

2nd number Max. number of index entries to be
generated <999999>

PINDEX - 568 - TUSTEP

Organizing records into text units

In case each index entry and, if applicable, each reference to
the pertinent text is contained entirely in one input record,
none of the following parameters should be used. In this case,
each input record comprises a text unit. If this is not the
case, the parameters AA and/or AE can be used to organize more
than one record into a single text unit.

If one of the following four parameters has been specified, any
blanks located at the beginning or end of the record will be
eliminated before the parameter is evaluated.

When input records are being reorganized into a single unit, a
blank will be inserted between each record, but not at positions
were hyphenation has been canceled (i.e. where words have been
rejoined (see parameter STR).

ANR Specifies whether successive records, whose records
numbers match either in part or in their entirety, are
to be organized into a text unit (organizing by
numbering). [I] <0>

One numerical value can be specified:

0 = No organization of records by record number
1 = All successive records having the same page number

are to be organized as a single text unit.
2 = All successive records having the same page-line

number (regardless of distinction number) are to
be organized into a single text unit.

3 = All successive records having the same record
number are to be organized into a single text
unit.

If 0 (default value) has been specified, organization
will be based only on the following two parameters; if
one of the numbers 1 to 3 has been specified, a
further breakdown of the created text units can be
carried out using the following two parameters.

AA Character strings placed at the beginning of a record
(after any leading blanks have been eliminated) which
mark the start of a text unit. [VIII a]

AE Character strings placed at the end of a record (after
any trailing blanks have been eliminated) which mark
the end of a text unit. [VIII b]

STR Hyphenation [I] <0>

0 = Input data is not hyphenated
1 = Rejoin hyphenated words

TUSTEP - 569 - PINDEX

Here a hyphen is considered to be a "-" which (after
trailing blanks have been eliminated) is the last
character in an input record if the second-to-last
character is also a "-" or a letter and the
third-to-last character is not a control character ($,
&, @, \, _, #, %).

When hyphenation is turned off, a hyphenated "ck",
which according to German hyphenation is written as
"k-" and "k", will not be joined back to its "ck"
form.

Replacing character strings during input

X Pairs of character strings (and exception strings). On
input, the first character string of a pair will be
replaced in the text by the pair às second character
string. [X]

Replacement is carried out separately in each input
record, even if a text unit consists of more than one
record (see parameters ANR, AA and AE).

Before the character string is replaced, a blank is
added to both the beginning and end of the record
(after any previous blanks have been removed); both
blanks are removed after replacement.

Before replacement takes place, the program first
checks to see whether the record begins with the
character string specified in parameter AA, or whether
it ends with the character string specified in the
parameter AE.

If hyphenated words are to be rejoined (parameter
STR), the program checks whether the record ends with
a hyphen after the character strings have been
replaced.

Selecting text parts which contain index entries

If the entire text unit contains index entries to be generated,
none of the following parameters are required.

A Character strings which mark the beginning of text
parts containing index entries to be generated. [IX]

E Character strings which mark the end of the text part
which containing index entries to be generated. [IX];

Each selected text part starts after the beginning
marker and ends before the end marker, or at the end

PINDEX - 570 - TUSTEP

of the text unit if no end marker is found. However,
if parameter EA has been specified, the beginning
marker is counted as part of the selected text part.

If both parameters A and E have been specified, all
text parts marked with A/E will be selected in
succession. The second text part begins after/at the
beginning marker which follows the end of the first
selected text. In this way, a beginning marker can
coincide with the end marker of the preceding text
part.

If only parameter A has been specified, the selected
text part ends at the end of the text unit; if only
the parameter E has been specified, the selected text
part starts at the beginning of the text unit.

Defining index entries

Index entries may be defined in two ways: by using the
parameters EA and EE to specify the beginning and/or end markers
by which they are identified as entries, or by using the
parameter TR to specify separator character strings located
between index entries.

If the parameter TR is specified along with the parameters EA
and/or EE, the text parts selected by EE/EA will be divided into
separate index entries according to the separator character
strings given in parameter TR.

After the index entries have been defined using parameters EA,
EE and/or TR, leading and trailing blanks will be removed from
the index entries.

EA Character strings which mark the beginning of an index
entry. [IX]

EE Character strings which mark the end of an index
entry. [IX]

Each selected index entry starts after the beginning
marker and ends before the end marker, or at the end
of the text unit (or of the text part selected by the
parameter A and E) if no end marker is found.

If both parameters EA and EE have been specified, all
text parts marked with EA/EE will be defined as index
entries. The second entry begins after the beginning
marker which follows the end of the first selected
entry. In this way, a beginning marker can coincide
with the end marker of the preceding text part.

If only parameter EA has been specified, the selected
text part, which is defined as an index entry, ends at
the end of the text unit; if only parameter EE has
been specified, the selected text part, which is

TUSTEP - 571 - PINDEX

defined as an index entry, starts at the beginning of
the text unit.

TR Character strings used to separate individual entries.
[IX]

Modifying index entries (not used when MODE=KWIC)

The following parameters should only be used in case the index
entries cannot be processed in an unaltered form.

((Characters strings which serve as a left parenthesis
when eliminating parts of index entries. [IX]

)) Character strings which serve as a right parenthesis
when eliminating parts of index entries. [IX]

The text parts in parentheses (including the
parentheses themselves) will be eliminated. Missing
parentheses are added logically at either the
beginning or end of the index entries.

XX Pairs of character strings (and exception strings).
The first character string of a pair will be replaced
by the pair às second character string [X]

Replacement takes place in every index entry after any
text parts of an entry have been eliminated by using
the parameters described above.

Assigning a type to each entry

If all index entries are to be assigned the same type, the
following parameter is the only parameter required for this.

TYP Type assigned to index entries [I <0>

In case the index entries are to be assigned different types,
there are two ways to assign each entry its specific type:
individually or by area. When MODE=KWIC, assignment is possible
by area only.

When assigning a type individually, the first character of each
index entry (other than a blank) is interpreted as the type
marker and is eliminated afterwards. It is not necessary to
provide this type marker with its own identification. Any blank
directly following it will be ignored.

PINDEX - 572 - TUSTEP

When assigning a type to a particular area, parameter TK must be
used to specify the identification, which is directly followed
(with no intervening blanks) by the type marker valid for the
respective index entries that follow it.

In both cases, the characters used as type markers must be given
in parameter TKZ.

TK Character strings used to identify type markers. [IX]

TKZ Characters used as type markers [VI]

Parameter TKN is used to assign type markers (a single
character) to a specific type (a number). The types given in
this parameter must be given in the same order as the
corresponding type markers in parameter TKN. If parameter TKN
has not specified, the 1st, 2nd, 3rd, ... type marker given in
parameter TKZ will be assigned to type 1, 2, 3, ... etc.

TKN Specifies the type (number) for each type marker. [I]

Numbers are assigned to type markers according to the
order of the characters given in parameter TKZ.

If less numbers are specified than the number of type
markers in parameter TKZ, the surplus type markers
will be assigned to type 0.

Determining key words (only when MODE=KWIC) For the KWIC index,
each "index entry",
as defined with the
help of the
parameters described
above, makes up the
text part which
contains the key
words. At the same
time, it is also the
context for these
key words.

Should key words occur only in certain parts of the "index
entry" (= text part serving as the context), these parts can be
marked off with the following parameters.

ASW Character strings marking the beginning of text parts
which contain the key words. [IX]

ESW Character strings marking the end of text parts which
contain the key words. [IX]

TUSTEP - 573 - PINDEX

If parameter ASW and/or ESW has been specified, only
those key words will be processed that begin within
the selected text parts.

Each selected text part begins with the beginning
marker and ends before the end marker or at the end of
the index entry if no end marker is found.

If both parameters ASW and ESW have been specified,
the key words will be taken in succession from all
text parts as specified with ASW/ESW. The second text
part starts after the beginning marker which follows
the end of the first text part. In this way a
beginning marker may coincide with the end marker of
the preceding text part.

If only parameter ASW has been specified, the selected
text part, from which the key words are taken, ends at
the end of the index entry; if only parameter ESW has
been specified, the selected text part, from which the
key words are taken, starts at the beginning of the
index entry.

(SW Character strings serving as left parenthesis for
marking off text parts from which key words are to be
taken (if necessary, after being defined by ASW and/or
ESW). [IX]

)SW Character strings serving as right parenthesis for
marking off text parts from which key words are to be
taken (if necessary, after being defined by ASW and/or
ESW). [IX]

If parameters (SW and/or)SW have been specified, key
words located entirely within the text parts in
parentheses will not be processed.

If these parameters have been specified along with
parameters ASW and/or ESW, each text part in
parentheses will be checked within the text parts
selected with said parameters.

Each marked-off text part begins with the character
string serving as the left parenthesis, and ends after
the character string serving as the right parenthesis.

If a missing parenthesis character is detected when
checking for demarcated text parts, the program will
logically insert a parenthesis at either the beginning
or the end of the text part. This function is also in
effect when only one of the parameters (SW or)SW have
been specified.

Note: The context of the key words are not altered by
these parameters; text parts in parentheses thus
remain in their context.

PINDEX - 574 - TUSTEP

Key words are separated by delimiter characters as specified in
parameter SWT.

SWT Character strings to be used as a delimiter character
between individual key words. [IX]

Defining the reference

Index entries can be provided with either a "standard
reference", or with a reference using text parts taken from the
input data. If the "standard reference" is to be used, none of
the following parameters (except IRL) need to be specified.

The standard reference specifies the beginning of each index
entry in terms of its page, line and word position. Page and
line numbers (with distinction numbers) are based on the record
numbers of the input file; word numbers are determined by
counting the words within the line. 6 digits are reserved for
the page number, 3 each for the line number and distinction
number, and 2 for the word number.

For counting words, a single word is defined as a character
string which is bordered by the start and/or end of the line
and/or one or more blanks. Punctuation marks and special
characters therefore either belong to a word or, when they are
separated from a word by blanks, count as a word of their own. A
hard space ("_") does not count as a blank.

If the reference is to be taken from the text, the text parts
which are to serve as a reference must be indicated in the
parameter RFA and/or RFE. If not specified otherwise in the
parameter RFL, the reference can be up to 6 characters long.
Each reference taken from the text is valid for all index
entries that follow (up to the next reference). (For exceptions,
see parameter RFG).

RFA Character strings which mark the beginning of the text
part to be used as a reference. [IX]

RFE Character strings which mark the end of the text part
to be used as a reference. [IX]

Each selected text part starts after the beginning
marker and ends before the end marker, or at the end
of the text unit if no end marker is found. If the
selected text part contains any leading or trailing
blanks, these will be eliminated automatically.

If both parameters have been specified, all text parts
marked with RFA/RFE will be used as a reference. The
second reference starts after the beginning marker
that follows the end of the first selected reference.
In this way, a beginning marker may coincide with the
end marker of the preceding text part which is to
serve as a reference.

TUSTEP - 575 - PINDEX

If only parameter RFA has been specified, the text
part selected as a reference ends at the end of the
text unit. If only parameter RFE has been specified,
the text part selected as a reference starts at the
beginning of the text unit.

The following parameter is used to replace character strings in
the text part selected with RFA/RFE before it is used as a
reference (and before the parameter RFT, if specified, is
evaluated).

RFX Pairs of character strings (and exception strings) in
a text part to be used as a reference, where the
pair às first character string is replaced by the
second character string. [X]

A reference may also consist of more than one part. The
individual parts of the reference are numbered in consecutive
order. The beginning marker of a text part determines which text
part selected by the parameter RFA/RFE will constitute a
particular part of the reference. For this purpose, parameter
RFZ can be used to specify the reference part number in the same
order as the corresponding character strings are given in the
parameter RFA/RFE. This reference part will be replaced in the
reference; subordinate reference parts (ie., those with a higher
number) will be replaced by blanks if not specified otherwise in
parameter RFB.

RFZ Specifies the number of the reference part designated
by each beginning marker. [I] <1,1,1,...>

Numbers are assigned to the character strings
according to the order of the character strings given
in parameter RFA.

RFB Specifies whether subordinate reference parts should
be retained or replaced by blanks (i.e. deleted) [I]
<0>

0 = replace with blanks (delete)
1 = retain other reference parts unchanged

In case the reference does not consist of a single part, the
parameter RFL must be used to specify the maximum length of each
individual reference part. The number of these length
specifications establishes in turn the number of reference
parts. If the reference consists of a single part, this
parameter should only be specified in case the default maximum
length (6 characters) is to be replaced by another value. If the
entire length of the reference (ie. the sum of all values given
in parameter RFL) is larger than 14, parameter IRL must be used
to specify the corresponding value.

PINDEX - 576 - TUSTEP

RFL Length (number of characters) of each reference part.
[I] <6>

A text part selected with RFA/RFE can contain more than one
reference part. In this case, parameter RFT must specify the
character string which separates reference parts from one
another.

RFT Character strings which separate individual reference
parts from one another. [IX]

The reference part with the number one (or the number specified
in the parameter RFZ) is located between the beginning marker
and the first separator character string. Each separator
character is followed by the reference part with the next higher
number. If a different order is desired, parameter RFN can be
used to specify which reference parts are to be preceded by
which separator character string parallel to the order of
character strings given in the parameter RFT. However, the
individual reference parts must always be given in ascending
order. Thus, parameter RFN can be used to keep track of missing
reference parts; in their place blanks will be inserted in the
reference.

RFN Specifies the numbers of the reference parts which are
defined by each (preceding) separator character
string. [I]

Numbers are assigned to the separator character
strings according to their order as given in parameter
RFT.

If less numbers are specified than the number of
separator character strings in parameter RFT, a
reference part which is preceded by one of the
remaining separator character strings is assigned the
next higher number than that of the preceding
reference part.

If, based on the value given in parameter RFN, an
attempt is made to introduce a reference part whose
number is equal to or less than that of the preceding
reference part, the corresponding specification made
in parameter RFN will be ignored. In this case, the
reference part will be assigned the next higher number
than that of the preceding reference part.

Fields of fixed length are provided for the individual reference
parts in the output records. Parameter RFL can be used to define
the length of each field. Parameter RFS is used to specify
whether each reference part should be aligned to the right or to
the left in the corresponding field. This is usually important
for sorting purposes only (i.e. in case the reference has not
been provided with its own sort key).

TUSTEP - 577 - PINDEX

RFS Specifies whether each reference part should be
aligned to the right or to the left in its
corresponding field. [I] <0,0,0,...>

0 = align to the right
1 = align to the left

It is advisable to align a reference part to the left
when it consists of letters, and to the right when it
consists of digits.

A reference taken from the text is valid for each of the
following index entries. If a text unit contains an index entry
located before the first text part to be used as a reference,
this index entry is assigned to the last reference of the
previous text unit. If in this case the first reference of the
current text unit is to be used instead, this can be specified
in parameter RFG. But the preceding reference remains valid for
index entries located in a text unit which follows the text part
to be used as a reference.

RFG Specifies whether the first text part to be used as a
reference should take effect from the beginning of the
text unit. [I] <0>

0 = Takes effect from the point where it is located.
1 = Takes effect from the beginning of the text unit.

14 character positions are reserved for the reference in the
output records (when MODE=+). This value can be modified by
using parameter IRL. Please note that this modification must be
taken into account in any subsequent programs used to process
this data. A modification of the default value is necessary if
the total reference length (= sum of the values specified in the
parameter RFL) is greater than 14. This is also recommended in
order to save available disk space when working with large
amounts of data if the total reference length is less than 14.

IRL Specifies the internal reference length. This is the
number of character positions that will be reserved
for the reference in the output records. [I] <14>

If the standard reference has been chosen, only one of
the values 6, 9, 12 and 14 may be given; in this case
only those reference parts will be inserted for which
there is enough space.

PINDEX - 578 - TUSTEP

Marking the reference (when not in MODE=KWIC)

When preparing an index with the TUSTEP program PREPARE INDEX,
the references for individual index entries can be treated in a
variety of ways. For example, the reference can be omitted
entirely from entries which serve as cross-references; in other
cases an "f" or "ff" can be added to the reference, or two
successive references can be generated in such a way as to
identify the beginning and end of a certain portion of text. In
order to accomplish this, the references of such index entries
must be provided with the corresponding marker when preparing
the index.

If none of the index entries are to contain a reference, MODE=-
can be specified when using the programs PREPARE INDEX and
GENERATE INDEX. If index entries without a reference are to be
merged with entries having a reference, entries which are to be
supplied with no reference when the index is generated (with the
TUSTEP program GENERATE INDEX) must nevertheless be provided
with a reference when the index is prepared (with the TUSTEP
program PREPARE INDEX). These must be marked accordingly. There
are two ways to do this: If all index entries generated by
PREPARE INDEX are to be treated in a uniform fashion, parameter
RFM can be used to specify whether or not the index entries are
to be supplied with a reference later on. If only certain index
entries are not to be supplied with a reference later on, these
must be given a unique marker character (this cannot be a
blank). This marker character must be specified in parameter
ORF.

RFM Specifies whether the index entries are to be provided
with a reference when the index is generated with the
TUSTEP program GENERATE INDEX. [I] <1>

0 = Index entries are not to be provided with a
reference

1 = Index entries are to be provided with a reference

ORF Character used to mark index entries which are to be
included in the index without a reference. [VI]

The marker character must be located at the beginning
of each entry (and after any type identification
character). After it has been recognized as such, it
will be eliminated. Any blank which directly follows
it will be ignored.

If references are to be provided with additional characters, the
corresponding entry must be given a unique marker (other than a
blank). This marker must be specified in one of the two
following parameters.

MF Character string used to mark the index entries after
whose reference the character "f" (or another

TUSTEP - 579 - PINDEX

character to be specified in the parameter F of the
TUSTEP program GENERATE INDEX) is to be added. [VI]

MFF Character string used to mark index entries after
whose reference the characters "ff" (or another
character to be specified in the parameter FF of the
TUSTEP programm GENERATE INDEX) are to be added.[VI]

The marker character must be located at the beginning
of each entry (and after any type identification
character). After it has been recognized as such, it
will be eliminated. Any blank which directly follows
it will be ignored.

If the references are used to specify the beginning and/or end
of a text area, the corresponding entries must be given a unique
marker (other than a blank). This marker must be specified in
the parameter VON (beginning) or the parameter BIS (end).

VON Character used to mark index entries whose reference
represents the beginning of an area. [VI]

BIS Character used to mark index entries whose reference
represents the end of an area. [VI]

The marker character must be located at the beginning
of each entry (and after any type identification
character). After it has been recognized as such, it
will be eliminated. Any blank which directly follows
it will be ignored.

Frequency specifications (when not in MODE=KWIC)

Besides generating the index, the TUSTEP program GENERATE INDEX
can also generate a frequency count. This means that identical
index entries are counted when they are condensed, in other
words, each index entry generated by the TUSTEP program GENERATE
INDEX has an implicit frequency of 1. However, it is possible to
provide index entries with an explicit frequency. This is done
by specifying the corresponding numerical value after a unique
character string at the end of the index entry. This character
string and the frequency specification are eliminated after they
are evaluated. Index entries without such frequency
specification are assigned a frequency of 1. The character
string used to specify the frequency must be given in parameter
HFA. In addition, the parameter HFL is used to specify the
maximum number of decimal places needed for the frequency field
in the output record.

HFA Character strings which define the explicit frequency
specification in the index entries. [IX]

PINDEX - 580 - TUSTEP

HFL Number of decimal places be reserved for the frequency
count in every generated index entry. [I] <0>

Inverting index entries (when not in MODE=KWIC)

The order of words in an index entry can be inverted (e.g.
"Friedrich von Schiller" can be changed to "Schiller, Friedrich
von"). This is accomplished by splitting the entry either at the
character string specified in the parameter UMP, or at the last
space between words, and then exchanging the two parts. In
addition, the character string ", " is inserted between the two
entry parts unless otherwise specified in parameter UME.

UMD Specifies whether the index entries are to be
inverted. [I] <0>

0 = Do not invert entries
1 = Entries are to appear in the index in inverted

form if they contain a character string specified
in the parameter UMP, or a blank; otherwise they
should be written to the index in their normal
form.

2 = Entries are to appear in the index in their normal
form, and also in their inverted form if they
contain a character string specified in the
parameter UMP, or a blank.

3 = Entries are to appear in the index in their
inverted form if they contain a character string
given in the parameter UMP; otherwise they are to
appear in the index in their normal form.

4 = Entries are to appear in the index in their normal
form and in their inverted form if they contain a
character string specified in the parameter UMP.

The specifications 1 and 2 differ from 3 and 4 in that
in the former, the last blank of the entry serves as
the point of inversion in case the index entry cannot
be inverted at a character string specified in the
parameter UMP.

If the entries contain type markers which have been
given in the parameter TKZ, a value can be given for
each type marker in parameter UMD. In order to make
the proper match to the type markers, these values are
to be given in the same order as the characters are
specified in parameter TKZ. If less numerical values
are specified than the number of type markers in
parameter TKZ, the surplus type markers will be
assigned the value 0.

UMP Character strings marking the point where index
entries are to be inverted. [IX]

If an index entry is to be inverted, it will be
scanned from left to right for the character strings

TUSTEP - 581 - PINDEX

specified in parameter UMP. When such a string is
found, the index entry will be inverted at this
position, unless this character string is at the very
beginning or end of the index entry. If none of the
specified character strings can be found, and 1 or 2
has been specified in parameter UMD, the index entry
will be inverted at the last space between two words
(one or more blanks) if present. After inversion, the
found character string or the blank space will be
eliminated. A blank located directly before or after
the found character string will also be eliminated.

UME Character strings to be inserted between the two
inverted parts of an index entry should inversion take
place. [II] <, >

If the entries contain type markers specified in
parameter TKZ, character strings can be assigned to
each type marker in parameter UME. In order to make
the proper match to the type markers, these character
strings are to be given in the same order as the
characters are specified in parameter TKZ. If less
character strings are specified that the number of
type markers, the surplus type markers will be
assigned the character string ", ".

Selecting index entries and key words

If not all key words (when MODE=KWIC), or not all index entries
(in all other modes) are to be included in the output, those
which are to be included can be selected with the following
parameters.

If an index entry, or key word, matches an entry specified in
parameter T+ or T+U, it will be included in the index. In this
case, the entry will no longer be checked against any other
parameters described in this section that may have been
specified. If no other parameters from this section have been
specified, only these index entries will be included in the
index.

T+ Index entries (or key words) to be included in the
index. [III]

No distinction is made between uppercase and lowercase
letters.

T+U Index entries (or key words) to be included in the
index. [III]

A distinction is made between uppercase and lowercase
letters.

PINDEX - 582 - TUSTEP

If an index entry matches an entry specified in parameter T- or
T-U, it will not be included in the index. In this case, the
entry will no longer be checked against any other parameters
from this section that may have been specified.

T- Index entries (or key words) to be omitted. [III]

No distinction is made between uppercase and lowercase
letters.

T-U Index entries (or key words) to be omitted. [III]

A distinction is made between uppercase and lowercase
letters

Parameters ZF+, TA+ and TE+ can be used to specify conditions
under which an index entry (or key word) is to be included in
the index. If one or more of these parameters are used, an index
entry (or key word) must fulfill at least one of the given
conditions if it is not to be omitted from the index.

ZF+ Character strings, of which at least one must occur in
the index entry (or key word) if it is to be included
in the index. [IX]

TA+ Character strings, of which at least one must match
the beginning of the index entry (or key word) if it
is to be included in the index. [VIII a]

TE+ Character strings, of which at least one must match
the end of the index entry (or key word) if it is to
be included in the index. [VIII b]

Parameters ZF-, TA- and TE- can be used to specify conditions
under which an index entry (or key word) is not to be included
in the index. If one or more of these parameters are used, an
index entry (or key word) will be omitted from the index if it
fulfills at least one of the given conditions.

ZF- Character strings, none of which should occur in the
index entry (or key word) if it is to be included in
the index. [IX]

TA- Character strings, none of which should occur at the
beginning of the index entry (or key word) if it is to
be included in the index. [VIII a]

TE- Character strings, none of which should occur at the
end of the index entry (or key word) if it is to be
included in the index. [VIII b]

TUSTEP - 583 - PINDEX

If one or more of the parameters ZF+, TA+ and TE+ as well as one
or more of the parameters ZF-, TA- and TE- have been specified,
an index entry (or key word) must fulfill at least one of the
conditions of the parameters ZF+, TA+ und TE+ and none of the
conditions of the parameters ZF-, TA- and TE- if it is to be
included in the index.

Checking the length of index entries

MTL Specifies the maximum length of an index entry. If an
index entry is longer than specified here, it will be
printed with the corresponding error message. [I]
<999999>

Supplementing index entries (not applicable when MODE=KWIC)

Supplementary text can be added before and/or after the index
entry (e.g. a general term under which the index entry is to
appear). The supplementary text consists of parts of the regular
text which have been marked as such; each supplementary text so
marked is valid for all subsequent index entries. In the
following description of the relevant parameters involved, those
parameters beginning with "EV" refer to a supplementary text
which is to be placed before each index entry, those parameters
beginning with "EN" refer to one which is to be placed after
each index entry.

EVK / ENK Character string to be inserted between the
supplementary text and the index entry. [II]

The text part specified in this parameter can be
regarded as a constant supplementary text in case the
supplementary text is not to be taken from the input
data by using one of the following parameters.

EVA / ENA Character strings which mark the beginning of the text
part which will serve as a supplementary text. [IX]

EVE / ENE Character strings which mark the end of the text part,
which will serve as a supplementary text. [IX]

Each selected text part begins after the beginning
marker and ends before the end marker, or at the end
of the text unit if no end marker is found.

If both the parameters EVA and EVE or ENA and ENE have
been specified, all text parts marked with EVA/EVE or
with ENA/ENE will be used in succession as
supplementary text. The second text part begins after
the beginning marker which follows the end of the
first text part. In this way, the beginning marker can

PINDEX - 584 - TUSTEP

coincide with the end marker of the preceding text
part which is to be used as a supplementary text.

If only the parameter EVA or ENA has been specified,
the text part selected as a supplementary text will
end at the end of the text unit; if only the parameter
EVE or ENE has been specified, the text part selected
as a supplementary text will begin at the beginning of
the text unit.

The following parameter is used to replace character strings in
text selected with the parameters EVA/EVE or ENA/ENE before the
text is taken as a supplementary text (and, if applicable,
before the parameters EVT or ENT are evaluated).

EVX / ENX Pairs of character strings (and exception strings);
the first character string of a pair will be replaced
by its second character string in the text part to be
used as a supplementary text. [X]

A supplementary text can also consist of a number of text parts
(e.g. when using a hierarchy of general terms). The individual
parts of the supplementary text are numbered in ascending order.
The beginning marker of these text parts is used to specify
which part of the supplementary text is actually selected with
EVA/EVE or ENA/ENE. For this purpose, the parameter EVZ or ENZ
can be used to specify (parallel to the order of the character
strings given in the parameter EVA or EVE) which part of the
supplementary text each character string corresponds to. This
part of the supplementary text will be replaced; subordinate
parts of the supplementary text (i.e. those with a higher
number) will be deleted, unless otherwise specified in parameter
EVB/ENB.

EVZ / ENZ Specifies the number of the supplementary text part
which has been marked by separate beginning markers.
[I] <1,1,1,...>

Numbers are assigned to the character strings in the
same order as the character strings are given in
parameter EVA or ENA.

EVB / ENB Specifies whether subordinate supplementary text are
to be retained or deleted [I] <0>

0 = delete subordinate supplementary text parts
1 = retain other supplementary text parts unchanged

A text part selected with EVA/EVE or ENA/ENE can also contain
more than one part of the supplementary text. In this case, the
parameter EVT or ENT must be used to specify the character
strings which separate the individual text parts.

TUSTEP - 585 - PINDEX

EVT / ENT Character strings which separate each supplementary
text part from one other. [IX]

The supplementary text part with the number 1 (or with the
number specified in parameter EVZ or ENZ) is located between the
beginning marker and the first separator character string. Each
separator character string is followed by the supplementary text
part having the next higher number. This arrangement can be
altered by using parameter EVN or ENN to specify (in the same
order as the separator character strings are given in parameter
EVT or ENT) which part of the supplementary text is introduced
by which separator character string. However, the individual
supplementary text parts must always be given in ascending
order.

EVN / ENN Specifies the numbers of the supplementary text parts
which are introduced by the individual separator
character strings. [I]

Numbers are assigned to separator character strings in
the same order as the character strings are given in
parameter EVT or ENT.

If less numbers than separator character strings are
specified in the parameter EVT or ENT, a supplementary
text part which is introduced by one of the surplus
separator character strings is allocated 1 number
greater than the preceding supplementary text part.

If an attempt is made to introduce a supplementary
text part whose number (based on the specifications
given in the parameter EVN or ENN) is equal to or less
than that of the preceding supplementary text part,
the corresponding specification in parameter EVN or
ENN will be ignored. In this case, the supplementary
text part will be allocated 1 number greater than that
of the preceding supplementary text part.

Sorting by group

NSN Character strings used to mark the beginning of a new
group of index entries; i.e. the point from which
index entries are given a new sort number. The number
of digits needed for the sort number must be specified
in parameter SNL.[VIII]

SNL Specifies the maximum number of digits needed for the
sort number. [I] <0>

PINDEX - 586 - TUSTEP

Determining the DESTINATION file

The program PREPARE INDEX can also be used to compile index
entries for different indexes as long as each index entry is
provided with a type marker as specified in parameter TKZ. This
is done by specifying a DESTINATION file for each index in the
command PREPARE INDEX. The following parameters are needed to
specify which index entries are to be written to which
DESTINATION file.

ZD Specifies the identification number of the DESTINATION
file to which the index entries, depending on their
type markers, are to be written. [I]

The DESTINATION files are assigned numbers in
ascending order, i.e. the first file is number 1, the
second is number 2, etc.

Numbers are assigned to the type markers according to
the order of type markers given in the parameter TKZ.

If the value 0 is given instead of a number of a
DESTINATION file, those index entries with the
corresponding type markers will not be included in the
output.

If less numbers are given than the number of markers
in the parameter TKZ, the index entries with the
remaining type markers will not be included in the
output.

The parameter ZDU is used to specify the DESTINATION file for
index entries having undefined type markers (i.e. a type marker
not specified in parameter TKZ).

ZDU Specifies the number of the DESTINATION file to which
index entries having undefined type markers are to be
written. [I] <0>

The DESTINATION files are assigned numbers in
ascending order, i.e. the first file is number 1, the
second is number 2, etc.

If the value 0 is given instead of a number of a
DESTINATION file, index entries with an undefined type
marker will not be included in the output.

TUSTEP - 587 - PINDEX

Generating the sort keys

A total of 9 sort keys may be defined. They are numbered
consecutively from 1 to 9. In the following parameters that
require a numerical value, a numerical value can be specified
for each sort key in their respective order: the first number in
each specification applies to the first sort key, the second to
the second sort key, etc. For all other paramters, the last
character of the parameter label is a digit (where n stands for
this digit), which specifies the number of the sort key for
which the parameter is valid.

The sort key can be used as follows:

- for MODE=-

 Sort keys 1 to 3 for the index entry

- for MODE=+

 Sort keys 1 to 3 for the index entry
 Sort keys 7 to 9 for the reference

- for MODE=KWIC

 Sort keys 1 to 3 for the key word
 Sort keys 4 to 6 for the context
 Sort keys 7 to 9 for the reference

In the following, the term "sort text" refers to the text
created from the respective sort key according to the
specifications given in the following parameters, i.e. the text
for the index entry, key word, context, or reference, depending
on which sort key is to be generated.

Should the sequence of references in the input data correspond
to the desired sequence of references in the index entry, the
reference generally does not have to be taken into account when
making the sort.

The reference therefore requires a sort key only when it cannot
be used as a sort field in its original form (for the commands
#SORT or #MERGE), i.e. when the desired sequence cannot be
realized with these commands.

If the reference consists of 2 or more parts, these will be
directly appended to each other. Should it be necessary to
separate the individual parts in order to generate the sort key,
an identification marker can be inserted in front of each
reference part with the following parameter.

RSK Text parts to be inserted in the sort text for marking
individual reference parts. The first text part
specified will be inserted in front of the first
reference part, the second text part in front of the
second, etc. [II]

This parameter is only relevant for generating the
sort text from the reference for the sort keys 7 to 9.
The reference itself is not altered in the process.

PINDEX - 588 - TUSTEP

The following parameters (ASn to KLS) are only necessary
whenever the entire sort text does not match the respective sort
key.

ASn Character strings which mark the beginning of the sort
text part which is to taken into account in the nth
sort key. [IX]

ESn Character strings which mark the end of the sort text
part which is to be taken into account in the nth sort
key. [IX]

AES Index for ASn and ESn [I] <1,1,1,1,1,1,1,1,1>

1 = Selects the first text part marked with A/E
(starting with the beginning marker and ending
before the following end marker or at the end of
the sort text).
If only A has been specified, the selected text
part will end at the end of the sort text; if only
E has been specified, the selected text part will
begin at the beginning of the sort text.

0 = Selects that part of the sort text which would be
excluded by choosing 1.

3 = As in 1. However, this selects not only the first
text part marked with A/E but all text parts
marked in this way (with the second text part
starting with the beginning marker that follows
the end of the first text part marked with A/E).
If only A has been specified, the selected text
part will start at the last beginning marker
occuring in the text unit and will end at the end
of the sort text. If only E has been specified,
the selected text part will start at the beginning
of the sort text and end before the last end
marker occuring in the sort text.

2 = Selects that part of the sort text which would be
excluded by choosing 3.

If one of the values 0 to 3 has been specified, each
beginning marker is counted as part of the text
following it, while the end marker is not counted as
part of the text. This treatment of beginning and end
markers can be reversed by adding either 10 or 20 to
the number chosen. If the value 10 is added (i.e. by
entering a number from 10 to 13), each beginning
marker will not be counted as part of the following
text; if 20 is added, each end marker will be counted
as part of the preceding text; if 30 is added, the
beginning marker is not counted as part of the
following text and the end marker is counted as part
of the preceding text.
If 2 or 3 is chosen, the program is instructed to
search the text for the next beginning marker starting
at the first position that follows the end of the
preceding text part. Therefore, for the values 2 and
3, the search for a new beginning marker starts at the
first character of the preceding text às end marker,

TUSTEP - 589 - PINDEX

since the end marker is not part of the preceding
text. If 20 or 30 is added to these values, the search
for the next beginning starts at the character which
follows the last position of the most recently found
end marker, since this marker counts as part of the
preceding text.

(Sn Left parenthesis for selecting a sort text part (in
case ASn and ESn have not been specified) or for
eliminating text parts from the sort text part already
selected by ASn and/or ESn which is to be taken into
account in the nth sort key. [IX]

)Sn Right parenthesis which closes (Sn [IX]

KLS Index for (Sn and)Sn [I] <0,0,0,0,0,0,0,0,0>

0 = Eliminates the parts of the text in parentheses
(including the parentheses themselves). Missing
parentheses are added logically at either the
beginning or end of the sort text or the text part
which has already been selected.

1 = Selects all text parts which would be eliminated
by option 0.

2 = As in 0, but unpaired parentheses are ignored
instead of being logically provided with a
complementary parenthesis.

3 = Selects those text parts which would be eliminated
by option 2.

If the values 0 to 3 are specified, the parentheses
themselves are considered part of the text in
parentheses are thus either eliminated along with the
text or are kept with it. This treatment of left and
right parentheses can be reversed by adding either 10
or 20 to the value chosen. If 10 is added, (i.e. by
entering a value from 10 to 13), left parentheses will
not be counted as part of the text in parentheses. If
20 is added, right parentheses will not be counted as
part of the text in parentheses. If 30 is added, no
parenthesis is counted as part of the text in
parentheses.

Nn Character strings used to mark words which are to be
omitted from the nth sort key. This marking and the
following characters, up to and including the
following blank or apostrophe, will be eliminated in
the respective sort key. [IX]

DEZ Number of positions to which a number in sort key is
to be filled out with leading zeros. Numbers which
have at least the specified number of digits remain
unaltered. [I] <1,1,1,1,1,1,1,1,1>

PINDEX - 590 - TUSTEP

Rn Character string used to mark Roman numerals which are
to be converted into a string of 4 Arabic numerals for
the nth sort key. The character strings must be placed
directly before the Roman numeral. [IX]

XSn Pairs of character strings (and exception strings);
the first character string of a pair will be replaced
by the pair às second character string in the nth sort
key. [X]

A1 - A3 Specifies a sorting alphabet for the nth sort key.
[VII]

SSL Specifies the length of each sort key. [I]
<0,0,0,0,0,0,0,0,0>

This parameter is obligatory.

RLF Specifies whether the sort key is to be written in
normal or reverse order. [I] <0,0,0,0,0,0,0,0,0>
0 = Arrange sort key in normal order
1 = Arrange sort key in reverse order (i.e. starting

with last character)

The sort keys 4 to 6 for the context can be arranged
in either normal or reverse order. In normal order,
the context part to the right of the key word will be
used as the sort text. In reverse order, the context
part to the left of the key word will be used.

TUSTEP - 591 - PINDEX

Alphabetical list of parameters

The character "n" in the parameter labels stands for the
numerals 1 to 9(e.g. Rn stands for R1, ..., R9).

((Parentheses for selecting parts of index entries . 571
(Sn Parentheses for selecting text parts in the sort key 589
(SW Parentheses for selecting text parts without key words 573
)) Parentheses for selecting parts of index entries . 571
)Sn Parentheses for selecting text parts in the sort key 589
)SW Parentheses for selecting text parts without key words 573
A Beginning of text parts containing index entries . 569
An Sort alphabet 590
AA Beginning of a text unit (beginning of a section) . 568
AE End of a text unit (end of a section) 568
ANR Compiling a text unit (section) by numbers 568
AES Index for ASn and ESn 588
ASn Beginning marker for sort key 588
ASW Beginning of text parts containing key words . . . 572
BER Selecting an area from the SOURCE file 567
BIS Marker for the end of a reference area 579
DEZ Number of decimal points for numbers in sort key . 589
E End of text parts containing index entries 569
EA Beginning of (index) entry 570
EE End of (index) entry 570
ENA Supplementary text after index entries: beginning marker

 . 583
ENB Supplementary text after indext entries: retain/delete 584
ENE Supplementary text after index entries: end marker 583
ENK Supplementary text after index entries: constant text 583
ENN Supplementary text after index entries: Numbers for ENT

 . 585
ENT Supplementary text after index entries: separator strings

 . 585
ENX Supplementary text after index entries: replacing

character strings 584
ENZ Supplementary text after index entries: index for ENA 584
ESn End marker for sort key 588
ESW End of text parts containing key words 572
EVA Supplementary text before index entries: beginning marker

 . 583
EVB Supplementary text before index entries: retain/delete 584
EVE Supplementary text before index entries: end marker 583
EVK Supplementary text before index entries: constant text 583
EVN Supplementary text before index entries: numbers for EVT

 . 585
EVT Supplementary text before index entries: separator strings

 . 585
EVX Supplementary text before index entries: replacing

character strings 584
EVZ Supplementary text before index entries: index for EVA 584
HFA Frequency specification: beginning marker 579
HFL Frequency specification: length (decimal places) . 580
IRL Length of internal reference 577
KLS Index for (Sn and)Sn 589
MAX Maximum for test runs 567
MF Marker for a reference with f 578
MFF Marker for a reference with ff 579

PINDEX - 592 - TUSTEP

MTL Maximum length of a sort text (text length) 583
Nn Marker for words to be omitted from sort key . . . 589
NSN Marker for new sort number 585
ORF Marker for index entries without a reference . . . 578
Rn Marker for Roman numerals in sort key 590
RFA Reference: beginning marker 574
RFB Reference: retain/delete 575
RFE Reference: end marker 574
RFG Reference: validity 577
RFL Reference: length of individual parts 576
RFM Reference: marking 578
RFN Reference: numbers for RFT 576
RFS Reference: sorting 577
RFT Reference: separator string for different parts . . 576
RFX Reference: replace character strings 575
RFZ Reference: index for RFA 575
RLF Reverse sorting 590
SNL Length of sort number 585
SSL Length of sort key 590
STR Undo hyphenation 568
SWT Separator string between key words 574
T+ Positive selection based on entire index 581
T+U Positive selection based on entire index 581
T- Negative selection based on entire index 582
T-U Negative selection based on entire index 582
TA+ Positive selection based on beginning of index entry 582
TA- Negative selection based on beginning of index entry 582
TE+ Positive selection based on end of index entry . . 582
TE- Negavive selection based on end of index entry . . 582
TK Type marker identification 572
TKN Type number for type markers 572
TKZ Type marker characters 572
TR Separator strings between index entries 571
TYP Index entry type 571
UMD Inverting index entries 580
UME Supplementary text at the point of inversion . . . 581
UMP Point of inversion 580
VON Marker for the beginning of a reference area . . . 579
X Replacing character strings during input 569
XX Replacing character strings in index entries . . . 571
XSn Replacing character strings in sort key 590
ZD Determining the DESTINATION file 586
ZDU DESTINATION file for undefined type markers 586
ZF+ Positive selection based on character strings . . . 582
ZF- Negative selection based on character strings . . . 582

TUSTEP - 593 - PINDEX

Further processing of data

After the data have been prepared for sorting with this program,
they must then be sorted with the command #SORT. If
two or more DESTINATION files have been specified,
each of these must sorted separately and subsequently
merged back into one file with the command #MERGE.

After sorting (and any merging) the index entries (or key words
with their respective context) can be processed for
output by using the TUSTEP program GENERATE INDEX.

If the sort key and the actual index entries have been written
to different files, these files must be merged into a
single file. To accomplish this, the file which was
given in the DATA specification (or -STD- for the
standard DATA file) in the PREPARE INDEX program must
also be given in the DATA specification of the TUSTEP
program GENERATE INDEX.

Structure of a data record

 REF TYP STB SN SS HF Text ...

MODE = - ++++ ++++++++ ++++ ============
MODE = + ******* ***** ***** ++++ ++++++++ ++++ ============

 REF Reference (normally 14 characters)
 TYP Type (1 character)
 STB Control bits (1 character)
 SN Sort number
 SS Sort key
 HF Frequency

 The length of the sort number and sort key
 depends on the length specified in the
parameters
 SNL and SSL; the standard reference length
 can be altered by the parameter IRL.

 === Input data
 *** Data supplied automatically
 +++ Data supplied upon specification of the
 corresponding parameters

 - 594 -

 @@@@@@@@ @@ @@ @@@@@ @@@@@@@@ @@@@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@@@@ @@ @@@@@ @@@@@@
 @@ @@ @@ @@ @@ @@ @@
 @@ @@ @@ @@ @@ @@ @@ @@
 @@ @@@@@ @@@@@ @@ @@@@@@@ @@

Tübingen

System of Text Processing Programs

 Program

 P R E P A R E S O R T I N G

1993

TÜBINGEN UNIVERSITY - CENTER FOR DATA PROCESSING

Department of Literary and Documentary Data Processing

Brunnenstrasse 27, D-72074 Tübingen

PRESORT - 596 - TUSTEP

Survey:

Command . 597

 Specifications . 597
 Features . 598
 General information 599

Parameters . 601

 Selecting data . 601
 Organizing records into text units 602
 Checking the length of text units 603
 Organizing text units into a sort unit 603
 Sorting by group 603
 Generating the sort text 604
 Generating the sort keys from the sorting text 606

 Alphabetical list of parameters 610

The individual modes and their specific parameters . . . 607

 MODE = - . 607
 MODE = + . 608
 MODE = R . 608
 MODE = K . 608
 MODE = S . 609

Further processing of data after sorting 611

Structure of a data record 611

Structure of a correction key 612

TUSTEP - 597 - PRESORT

Command:

#PRESORT

Specifications:
SOURCE = file Name of the file containing the data to

be prepared for sorting

= -STD- The standard TEXT file contains the data
to be prepared for sorting

DESTINATION= file Name of the file to which the data
prepared for sorting are to be written.
More than one file may be specified.

= -STD- The data prepared for sorting are to be
written to the standard TEXT file.

MODE = - Generate sort key only

= + * Generate sort key and add REF/TYPE/STB

= R Input data contain REF/TYP/STB;
add sort key

= K Input data are correcting instructions;
add corrrection key and, if indicated by
parameters, sort key

= S Input data are correcting instructions
with correction key; add sort key

ERASE = - * If the DESTINATION, DATA, or LISTING file
already contains data, they are to be
retained.

= + If the DESTINATION, DATA, or LISTING file
already contains data, they are to be
erased beforehand.

PARAMETER = file Name of the file containing parameters

= * Parameters follow the command and are
ended by *EOF

DATA = - * The data are to be written to the
DESTINATION file in their entirety.

= file Name of the file to which the text part
of each record is to be written.

= -STD- The text part of each record is to be
written into the standard DATA file.

LISTING = - * No trace

= + Trace listing is to be written into the
journal.

PRESORT - 598 - TUSTEP

= -STD- Trace listing is to be written to the
standard LISTING file.

= file Name of the file to which the trace
listing is to be written.

Features:

With this command, text units (consisting of one or more input
records which may also be correcting instructrions) can be
prepared for sorting. It is possible to define the criteria for
sorting.

TUSTEP - 599 - PRESORT

General information:

Input data are generally arranged into text units (see:
"Organizing records into text units "), so that each text unit
represents a sorting unit.

If sorting is not to be carried out according to the wording of
the text but according to certain parts of the text unit,
selective parameters (see: "Generating the sorting text") are
used to specify which parts of the text are to be sorted into
which order. These will be organized into a sorting text, with
each part separated by two additional blanks. If no selective
parameters are specified, the sorting text is identical to the
text of the text unit.

One to three sort keys may be constructed from the sorting text.
This is necessary because the order of characters in the the
computer às internal code does not correspond to the usual
alphabetical order. The sort key is used for sorting purposes
only and is subsequently eliminated. Only one sort key is
necessary for texts containing no umlauts or diacritical marks.
If the text contains umlauts, the usual alphabetical order (as
defined by DIN 5007) is preserved by encoding ä, ö, ü and ß as
ae, oe, ue and ss for the first sort key. A second key is
necessary, however, if words such as "Maße" and "Masse" or names
such as "Jäger" und "Jaeger" are to be kept separate from each
other. For this sorting key, ä, ö, ü and ß can be encoded as az,
oz, uz und sz. If a text contains diacritical marks, a second
sort key is also necessary. Normally, all diacricritical marks
are eliminated for the first sort key in order that sorting can
be first carried out in alphabetical order; accents and other
diacritical marks only affect the order of two identical
characters. For the second sort key, each accent may be encoded
as a decimal number, for example, so that words which differ
only by diacritical marks may be arranged in the desired order.
In addition, if uppercase and lowercase letters are decisive in
the sorting process, a third key is required. If, however,
umlauts and diacritical marks do not occur in the text, sorting
of uppercase and lowercase letters can be handled by the second
sort key.

If the text units of an imput file are organized by group, they
can be sorted within each of their respective groups only. This
requires that the beginning of each group is marked in a unique
way, such as using a marker before each section title. Each
group is numbered internally and the corresponding number placed
directly in front of the sort key of the individual text units.
This keeps groups in their original, unchanged order.

The program às memory limits the length of each text unit. If
memory is not large enough to handle extremely large text units,
they can be broken down into smaller text units which are then
organized into a single sorting unit whose size is unlimited.
Text units which belong to the same sorting unit as the previous
text unit must be marked as such. However, all sorting criteria
must be contained in the first text unit of each sorting unit.

The sort program (#SORT comand) requires a certain amount of
memory for temporary storage of the data to be sorted. Large

PRESORT - 600 - TUSTEP

amounts of data may exceed available memory. This can usually be
avoided by outputting the sort key and the actual text data to
separate files (DESTINATION file and DATA file, respectively).
Of these two files, only the DESTINATION file containing the
sort keys needs to be sorted. If the amount of available memory
is still too small for sorting, the sort key can be distributed
among a number of files by specifying the appropriate
DESTINATION files (no additional parameters are necessary).
These must be sorted individually and then merged back into a
single file.

TUSTEP - 601 - PRESORT

Parameters

Values in < > refer to initial settings.

Values in [] refer to the type of parameter employed. The
various types of parameters are described in the
chapter "TUSTEP Basics".

In certain parameters, text parts can be selected for further
processing by means of beginning and/or end markers as well as
markers that serve as left and right parentheses for selecting
the desired part. The manner in which these parameters function
is also described at the end of the "Parameters" chapter of
"TUSTEP Basics".

In addition to the parameters described below, parameters for
defining string groups and character groups may also
be employed. [V]

Parameter SSL must be specified at the very least.

Selecting data

If the entire file is to be processed, none of the following
parameters are necessary.

BER Definition of an area ("page.line-page.line") or a
starting point ("page.line"). This parameter is only
used when not processing the entire file. [XI]

If a segment of a segment file is to be processed, the
name of the segment can be substituted for the area.

This parameter can only be used when the record
numbers of the input files are in ascending order.

MAX For test runs, this specifies how many text units (=
input records, if neither the parameters AA or AE are
specified) to be prepared for sorting. [I] <999999>

PRESORT - 602 - TUSTEP

Organizing records into text units

In case each input record contains a complete text unit (sorting
unit), the following parameters should not be used. If this is
not the case, the parameters AA and/or AE can be used to
organize more than one record into a single text unit.

If one of the following four parameters has been specified, any
blanks located at the beginning or end of the record will be
eliminated before the parameter is evaluated.

When input records are being reorganized into a single unit, a
blank will be inserted between each record, but not at positions
were hyphenation has been canceled (i.e. where words have been
rejoined (see parameter STR).

ANR Specifies whether successive records, whose records
numbers match either in part or in their entirety, are
to be organized into a text unit (organizing by
numbering). [I] <0>

One numerical value can be specified:

0 = No organization of records by record number
1 = All successive records having the same page number

are to be organized as a single text unit.
2 = All successive records having the same page-line

number (regardless of distinction number) are to
be organized into a single text unit.

3 = All successive records having the same record
number are to be organized into a single text
unit.

If 0 (default value) has been specified, organization
will be based only on the following two parameters; if
one of the numbers 1 to 3 has been specified, a
further breakdown of the created text units can be
carried out using the following two parameters.

AA Character strings placed at the beginning of a record
(after any leading blanks have been eliminated) which
mark the start of a text unit. [VIII a]

AE Character strings placed at the end of a record (after
any trailing blanks have been eliminated) which mark
the end of a text unit. [VIII b]

STR Hyphenation [I] <0>

0 = Input data is not hyphenated
1 = Rejoin hyphenated words

Here a hyphen is considered to be a "-" which (after
trailing blanks have been eliminated) is the last
character in an input record if the second-to-last

TUSTEP - 603 - PRESORT

character is also a "-" or a letter and the
third-to-last character is not a control character ($,
&, @, \, _, #, %).

When hyphenation is turned off, a hyphenated "ck",
which according to German hyphenation is written as
"k-" and "k", will not be joined back to its "ck"
form.

Checking the length of text units

MTL Specifies the maximum length of a text unit [I]

If a text unit is longer than specified, it will be printed out
along with a corresponding error message.

Organizing text units into a sorting unit

FS Character string used to designate (continuation) text
units. If the specified character is placed at the
beginning of a text unit, this text unit will not be
treated as a sorting unit but rather considered as a
continuation of the preceding text unit. [VIII a]

This parameter can only be used when MODE=-.
Furthermore, a file name (or -STD- for the standard
DATA file) must be given for the DATA specification.

Sorting by group:

NSN Character string used to mark the beginning of a new
group of text units; i.e. the point from which text
units are given a new sort number. The number of
digits needed for the sort number must be given in
parameter SNL. [VIII a]

SNL Specifies the maximum number of digits available for
the sort number. [I] <0>

PRESORT - 604 - TUSTEP

Generating the sorting text:

AK1/AK9 Character strings used to mark the beginning of the
1st,2nd,...,9th part of the sorting text. [IX]

EK1/EK9 Character strings used to mark the end of the
1st,2nd,...,9th part of the sorting text. [IX]

AEI Index for AK1,EK1... AK9,EK9 [I] <1,1,1,1,1,1,1,1,1>

1 = Selects the first text part marked with A/E
(starting with a beginning marker and ending
before the following end marker or at the end of
the text unit itself).
If only A has been specified, the selected text
part will end at the end of the text unit; if only
E has been specified, the selected part will begin
at the beginning of text unit.

0 = Selects that part of the text unit which would be
excluded by choosing 1.

3 = As in 1. However, this selects not only the first
text part marked with A/E but all text parts
marked in this way (with the second text part
starting with the beginning marker which follows
the end of the first text part marked with A/E).
If only A has been specified, the selected text
part will begin at the last beginning marker
occuring in the text unit, and will end at the end
of the text unit. If only E has been specified,
the selected text part will start at the beginning
of the text unit and end before the last end
marker of the text unit.

2 = Selects that part of the text unit which would be
excluded by choosing 3.

If one of the values 0 to 3 is specified, each
beginning marker is counted as part of the text
following it, while the end marker is not counted as
part of the text. This treatment of beginning and end
markers can be reversed by adding either 10 or 20 to
the number chosen. If the value of 10 is added (i.e.
by entering a number from 10 to 13), each beginning
marker will not be counted as part of the following
text; if 20 is added, each end marker will be counted
as part of the preceding text. If 30 is added, the
beginning marker is not counted as part of the
following text and the end marker is counted as part
of the preceding text.
When 2 or 3 is chosen, the program is instructed to
search the text for more than one beginning marker,
and will look for a new beginning marker starting at
the first position after the end of the preceding text
part. Therefore, for the values 2 and 3, the search
for a new beginning marker starts at the first
character of the preceding text às end marker, since
the end marker is not part of the preceding text.
Beginning and end markers may thus overlap in the

TUSTEP - 605 - PRESORT

text. If 20 or 30 is added to these values, the next
beginning marker is searched from the character which
follows the last position of the most recently found
end marker, since this marker is counted as part of
the preceding text.

(K1/(K9 Left parenthesis for selecting the
1st,2nd,...,9th part of the sorting text (in case
AK1|EK1... AK9|EK9 has not been specified) or for
eliminating text from the 1st,2nd,...,9th part of the
sorting text already selected with AK1|EK1... AK9|EK9
[IX]

)K1/)K9 Right parenthesis which closes (K1 ... (K9 [IX]

KLI Index for (K1,)K1 ... (K9,)K9 [I] <0,0,0,0,0,0,0,0,0>

0 = Eliminates the parts of the text in parentheses
(including the parentheses themselves). Missing
parentheses are added logically at either the
beginning or end of the text unit or text part
which has already been selected.

1 = Selects all text parts which would be eliminated
by option 0.

2 = As in 0, but unpaired parentheses are ignored
instead of being logically provided with a
complementary parenthesis.

3 = Selects those text parts which would be eliminated
by option 2.

If the values 0 to 3 are specified, the parentheses
themselves are considered part of the text in
parentheses and are thus either eliminated along with
the text or are kept with it. This treatment of left
and right parentheses can be reversed by adding either
10 or 20 to the value chosen. If 10 is added (i.e. by
entering a value from 10 to 13), each left parenthesis
will not be counted as part of the text in
parentheses. If 20 is added, each right parenthesis
will not be counted as part of the text in
parentheses. If 30 is added, neither parenthesis will
be counted as part of the text in parentheses.

((1/((9 Left parenthesis for selecting the
1st,2nd,...,9th part of the sorting text (in case
AK1|EK1... AK9|EK9 and/or (K1|)K1 ... (K9|)K9 have not
been specified), or for eliminating text from the
1st,2nd,...,9th part of the sorting text already
selected with AK1|EK1... AK9|EK9 and/or (K1|)K9 [IX]

))1/))9 Right parenthesis for ((1 ... ((9 [IX]

DKI Index for ((1,))1 ... ((9,))9
[I] <0,0,0,0,0,0,0,0,0>

PRESORT - 606 - TUSTEP

Specifications match those used for parameter
KLI

XX1/XX9 Replacing character strings in the 1st,2nd,...,9th
part of the sorting text. [X]

ERG Text parts to be added before the first part of the
sorting text, between each individual part of the
sorting text, and after the last part of the sorting
text. [II] <no additions made before the first and
after the last part, two blanks are added between each
individual part of the sorting text>

MLS Specifies the maximum length for each individual part
of the sorting text. It is especially advisable to
limit the length for a part of text when, on one hand,
the corresponding parts of the sorting text differ
after a certain number of characters but, on the other
hand, are so long that the sorting text thereby
becomes unnecessarily long, or even so long that the
following parts of the sorting text can no longer be
taken into account in the sort key because the sort
key will be filled up by the extremely long text part.
[I] <999999,...,999999>

Generating the sort keys from the sorting text:

The following parameters (AS1 - AS3 to KLS) are only necessary
in case the entire sorting text is not to be taken into account
in the respective sort key.

AS1 - AS3 Character string which marks the beginning of the part
of the sorting text which is to be taken into account
in the 1st,2nd,3rd sort key. [IX]

ES1 - ES3 Character string which marks the end of the part of
the sorting text which is to be taken into account in
the 1st,2nd,3rd sort key. [IX]

AES Additional specifications for AS1,ES1, ... AS3,ES3 [I]
<1,1,1>

Values here are analogous to those used in the
parameter AEI

(S1 - (S3 Left parenthesis for selecting the part of the sorting
text (in case AS1|ES1 ... AS3|ES3 is not specified) or
for eliminating parts of text from the part of the
sorting text already selected by AS1|ES1 ... AS3|ES3
which is to be taken into account in the
1st,2nd,3rd sort key. [IX]

TUSTEP - 607 - PRESORT

)S1 -)S3 Right parenthesis which closes (S1 ... (S3.

KLS Index for (S1,)S1, ... (S3,)S3 [I] <0,0,0>

Values here are analogous to those used in the
parameter KLI.

N1 - N3 Character strings used to mark words which are to be
omitted from the 1st,2nd,3rd sort key. This marking
and the following characters, up to and including the
following blank or apostrophe, will be eliminated in
the respective sort key. [IX]

DEZ Number of positions to which a number in a sort key is
to be filled out with leading zeros. Numbers which
consist of the specified number of digits (or more)
remain unaltered. [I] <1,1,1>

R1 - R3 Character string used to mark Roman numerals which are
to be converted into a string of 4 Arabic numerals for
the 1st,2nd,3rd sort key. The character strings must
be placed directly before Roman numerals. [IX]

XS1 - XS3 Replacing character strings for the 1st,2nd,3rd sort
key. [X]

A1 - A3 Specifies a sorting alphabet for the 1st,2nd,3rd sort
key. [VII]

SSL Specifies the length of 1st,2nd,3rd sort key. [I]
<0,0,0>

This parameter is obligatory.

The individual modes and their specific parameters:

MODE = -

Only sort keys are generated for the text units (each of which
may consist of more than one input record).

PRESORT - 608 - TUSTEP

MODE = +

As in MODE=- . In addition, for each text unit a reference
(REF), a type (TYP) und control bits (STB) are inserted before
the sort key or sort number. The reference indicates where the
text unit is located in the source file. It usually consists of
14 characters: 6 characters for the page number, 3 characters
for the line number, 3 characters for the distinction number, 2
blanks (reserved for the word number used by other programs). If
a text unit consists of more than one line, its first line
determines the reference. The type (1 character) is determined
by the parameter TYP. It can be used for output control with the
TUSTEP program GENERATE INDEX. Of the STB control bits, only one
(i.e. one character) can be set or erased by parameter RFM. This
bit controls whether the reference of the sorting units will be
included (bit set) in, or excluded (bit erased) from the output
generated by the TUSTEP programs GENERATE INDEX.

TYP Specifies the type for all text units. [I] <0 =
undefined>

RFM Specifies whether the sorting units should be supplied
with a reference when processed by the TUSTEP program
program GINDEX. [I] <1>

0 = sorting units to be supplied with a reference
1 = sorting units are not to be supplied with a

reference

IRL Specifies the number of characters for the reference
(REF). [I] <14>

MODE = R

As in MODE=+, but each input record contains a (complete) text
unit (parameters AA and AE prohibited in this case), and
REF/TYP/STB are already present. The type and reference bits can
be altered by using the parameters TYP and RFM, respectively.

MODE = K

Each input record contains a correcting instruction (e.g. as
generated by the TUSTEP program COMPARE), for which correction
keys and, depending on the parameter SSL, sorting keys are to be
generated. The correction key is the program às internal encoding
of part of the correcting instruction and is 44 characters long.
Its structure is identical to that of the correction key used in
the TUSTEP program COMPARE (specified there by parameter SW).
Should the correcting instructions contain a version
identification (e.g. as inserted by parameter VKZ in the TUSTEP

TUSTEP - 609 - PRESORT

program COMPARE), this can be converted into a reference by
using the parameter RFL. In this case, REF/TYP/STB is added as
in MODE=+.

RFL Maximum length of the version identification of the
correcting instruction which is to be converted into a
reference. [I] <0>

SW Specifies the sorting value to be inserted into the
correcting instruction. [I] <0>

MODE = S

As in MODE=K, but here the correction key is already present
(generated by using the SW parameter in the TUSTEP program
COMPARE. The sorting value can be altered by specifying this in
parameter SW.

PRESORT - 610 - TUSTEP

Alphabetical list of parameters

The character "n" in the parameter labels stands for the
numerals 1, 2, 3 (e.g. Rn stands for R1, R2 and R3), the
character "m" for the numerals 1 to 9.

((m Parentheses for selecting text parts in the sorting text
605
(Km Parentheses for selecting text parts in the sorting text
605
(Sn Parentheses for selecting text parts in the sort key 606
))m Parentheses for selecting text parts in the sorting text
 . 603
)Km Parentheses for selecting text parts in the sorting text
605
)Sn Parentheses for selecting text parts in the sort key 607
An Sorting alphabet 607
AA Beginning of a text unit (beginning of a section) 602
AE End of a text unit (end of a section) 602
AEI Index for AKm and EKm 604
AES Index for ASn and ESn 606
AKm Beginning marker for sorting text 604
ANR Forming a text unit (section) by number 602
ASn Beginning marker for sort key 606
BER Selecting an area from the SOURCE file 601
DEZ Number of decimal points for numbers in sort key . 607
DKI Index for ((m and))m 605
EKm End marker for the sort key 604
ERG Additions to the sorting text 606
ESn End marker for the sort key 606
FS Marker for continuation text units 603
IRL Internal reference length 608
KLI Index for (Km and)Km 605
KLS Index for (Sn and)Sn 607
MAX Maximum text units for test runs 601
MLS Maximum length of individual parts of the sorting text 606
MTL Max. length of a text unit (text length) 603
Nn Marker for words not to be sorted 607
NSN Marker for new sort number 603
Rn Marker for Roman numerals in the sort key 607
RFL Length of the label serving as a reference 609
RFM Marking for reference purposes 608
SNL Length of the sort number 603
SSL Length of the sort key 607
STR Hyphenation . 602
SW Sorting value 609
TYP Type of text units 608
XSn Replacing character strings in the sort key 607
XXm Replacing character strings in the sorting text . . 606

TUSTEP - 611 - PRESORT

Further processing of data after sorting:

After the data have been prepared for sorting with this program,
they must then be sorted with the command #SORT. If two or more
DESTINATION files have been specified, each of these must sorted
separately and subsequently merged back into one file with the
command #MERGE.

After sorting (and any merging) has been completed, the text
units can be restored to the normal TUSTEP text format by using
the TUSTEP program COPY, or can be processed for output with the
TUSTEP program GENERATE INDEX.

If the sort key and the actual text files have been written to
different files, these files must be united in a single file. To
accomplish this, the file which was given for the DATA
specification (or -STD- for the standard DATA file) in the
PREPARE SORTING program must also be given in the DATA
specification of the TUSTEP programs COPY or GENERATE INDEX.

Unless the file given for the DATA specification (or -STD- for
the standard DATA file) has already been specified in the SORT
command, the data assembled from more than one text unit into a
single sorting unit can be further processed only by the TUSTEP
program COPY in MODE=S.

Structure of a data record:

 REF TYP STB KS SN SS Text ...

MODE = - ++++ ++++++++ ============
MODE = + ***** ***** ***** ++++ ++++++++ ============
MODE = R ===== ===== ===== ++++ ++++++++ ============
MODE = K +++++ +++++ +++++ ****** ++++ ++++++++ ============
MODE = S +++++ +++++ +++++ ====== ++++ ++++++++ ============

 REF Reference (normally 14 characters)
 TYP Type (1 character)
 STB Control bits (1 character)
 KS Correction key (44 characters)
 SN Sort number
 SS Sort key

 The length of the sort number and sort key
 depends on the length specified in the parameters
 SNL and SSL; the standard reference length can be
 altered by the parameter IRL.

 === Input data
 *** Data supplied automatically
 +++ Data supplied upon specification of
 the corresponding parameters

PRESORT - 612 - TUSTEP

Structure of a correction key:

The correction key consists of a total of 44 characters and is
structured as follows:

 APO EPO KA SW FNR POS

APO 1 17 Starting position of the corrective text

 1 6 page number
 7 3 line number
 10 3 distinction number
 13 2 word number
 15 3 character number

EPO 18 17 End position of the corrective text

 18 6 page number
 24 3 line number
 27 3 distinction number
 30 2 word number
 32 3 character number

KA 35 2 Type of correction:

 35 1 0 = error
 1 = page-line-word-character
 2 = page-line-word
 3 = page-line

 36 1 0 = error
 1 = comment (*)
 2 = delete (-)
 3 = replace (=)
 4 = insert (+)

SW 37 2 Sorting value (version number)

FNR 39 3 Continuation number (for continuation lines)

POS 42 3 Position of the correction code (*, -, =, +)
 in the correcting instruction

The first number specifies the position of each character within
the correction key, the second number specifies the maximum
number of characters allowed.

	Front page
	Table of contents
	Introduction
	What is TUSTEP?
	Basic Operations for Processing Textdata
	Organizational Features

	Files
	Data Transfer
	Data Backup
	System Environment
	TUSTEP Startup
	Commands
	General Information
	Entering Commands
	Interrupting command execution
	#CALL
	#CLOSE
	#COLLATE
	#COMPARE
	#CONVERT
	#COPY
	#CORRECT
	#CREATE
	#DEFINE
	#DUMP
	#EDIT
	#ERASE
	#ERROR STOP
	#EXECUTE
	#FORMAT
	#GFORMS
	#GINDEX
	#GLISTING
	#HELP
	#INFORM
	#INSERT
	#JOURNAL
	#LIST
	#MACRO
	#MANUAL
	#MERGE
	#MTINFORM
	#MTLABEL
	#MTREAD
	#MTWRITE
	#NUMBER
	#OPEN
	#PARAMETER
	#PAUSE
	#PINDEX
	#PRESORT
	#PRINT
	#RENAME
	#RESET
	#RESTORE
	#SORT
	#STATISTICS
	#SWITCH
	#TIME
	#WIPE

	Editor
	Basic instructions
	Organizational instructions
	Extended instructions
	Search instructions for structured data
	Syntax for defining a range / position
	Limiting to columns
	Character string search table CSST
	Character string comparison table CSCT
	Character string pairs CSPT
	Adjusting the Editor to screen display
	Editor control commands
	Key combinations for control commands

	Parameters
	Macros
	General Notes
	Macro instructions
	Conditions
	Compute statements
	Testing aids
	Examples

	Character set
	Code tables
	ASCII code tables
	EBCDIC code tables
	Standard sort order

	Appendix
	Parameter-controlled Programs
	#COLLATE
	#COMPARE
	#COPY
	Compute statements
	Logical program structure

	#CORRECT
	#FORMAT
	#GFORMS
	#GINDEX
	#GLISTING
	#INSERT
	#NUMBER
	#PINDEX
	#PRESORT

